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I. MEASUREMENT DETAILS
A. Optical setup

In this section, we describe the detailed experimental setup for measuring the hyperspectral reflection matrix
(Supplementary Fig. 1). We use off-axis holography in the Mach—Zehnder configuration [53, 79] to measure the
complex field information including amplitude and phase. The light source is generated by a tunable Ti:Sapphire laser
(M Squared SolsTiS 1600) and is polarized, the frequency of which can be scanned and is monitored by a wavemeter
(HighFinesse Wavemeter WS6-600). To balance the power at different frequencies, we use a motorized attenuator
(Newport Motorized Variable Beam Splitter VA-CB-2-CONEX) to produce a frequency-dependent attenuation.

The laser beam is split into a sample beam and a reference beam through a polarized beam splitter (Newport
Polarizing Cube Beamsplitter 05FC16PB.5). The sample beam is focused onto the back focal plane of an objective
lens (Mitutoyo M Plan Apo NIR 100X) to create a plane-wave-like directional illumination onto the sample, with the
reference plane being the focal plane of the objective lens. The angle of illumination is scanned by a dual-axis galvo
scanner (ScannerMAX Saturn 5B). After the galvo scanner, we use a telecentric system composed of one scan lens
(Thorlabs Scan Lens SL50-2P2) and two tube lenses (Thorlabs Tube Lens TTL200MP) to create a sharp focus on
the back focal plane of the objective lens. Between the two tube lenses, there is a plane conjugate to the focal plane
of the objective lens, where we place an iris diaphragm to control the illumination area on the sample. The scattered
light from the sample is measured by a microscope imaging system composed of the objective lens, another tube lens
(Thorlabs Tube Lens TTL200-S8), and a high-speed camera (Photron FASTCAM NOVA S6). The camera sensor is
located on a plane that is also conjugate to the objective focal plane. When the objective lens focuses light on a mirror
or a sample surface, the iris in the incidence path can be clearly imaged on the camera. The numerical aperture of
the objective lens is NA = 0.5. With a magnification of 100X and a camera pixel size of 20 pm, the detection system
provides a pixel resolution of dxpixet = 0.2 pm; this pixel resolution is smaller than the diffraction limit in order to
resolve the interference fringes in off-axis holography (Supplementary Sect. I C). The camera sensor has a pixel count
of 1024x1024. In this work, we use a region of interest of 256x256 pixels, corresponding to a field of view (FOV) of
51.2x51.2 pm?.

By using plane-wave-like (unfocused) illumination in momentum space klun, we avoid nonlinear response or photo-

damage of the sample. By using a real-space detection rﬁ“t, we avoid localized saturation of the camera, allowing us

to tune the power to optimize the signal-to-noise ratio.

The sample is mounted on a 3-axis (XYZ) translation stage, with a motorized actuator (Newport Motorized Actuator
TRAG6CC) for controlling and monitoring the z position of the sample. A separate camera (Edmund EO-0514) images
the sample from the other side to facilitate selecting the region of interest in the sample. We use a switchable
sample holder (Thorlabs Multi-Position Sliders ELLIK) to switch between samples and/or a mirror. For an accurate
calibration of the incident angles (Supplementary Sect. IIT A), the mirror is placed perpendicular to the optical axis
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Supplementary Fig. 1. Detailed experimental setup.



of the system. To this end, we first adjust the galvo scanner so that the part of the incident beam reflected by the
back end of the objective lens follows the optical axis and reaches the center of the camera sensor. This indicates
that the incident beam aligns with the optical axis and is focused at the center of the objective lens. Another portion
of the beam passes through the objective lens and is reflected by the mirror. The camera captures the resulting
interference between reflections from the objective lens and the mirror. When the mirror’s reflection deviates from
the optical axis, interference manifests as a striped pattern. Adjustments are made to the mirror’s tilting angle to
maximize interference fringe spacing, aligning the mirror reflection with the optical axis. When the mirror plane
is perpendicular to the optical axis, the interference pattern transitions into concentric circles, characterized by a
maximum fringe spacing.

The scattered light from the sample is combined with the reference beam at an angle to create interference patterns
which are recorded by the camera (Supplementary Sect. I C). The reference beam arrives at the camera as a collimated
beam, the size of which is matched with the sample beam size. To produce a clean and spatially uniform reference
beam profile, we place a pinhole on the focal plane of the tube lens.

A delay line in the reference arm is used to match the optical path lengths of the two interfering beams. To set the
delay, we first use a ruler to do a rough measurement of the optical path length difference AL between the two beams
with an accuracy of a few centimeters. For finer tuning, we examine the reflection phase of a mirror measured by
off-axis holography (Supplementary Sect. IC). The residual path length difference AL produces a linear frequency-
dependent phase e*“/9AL where ¢ is the speed of light, which we measure with a fine frequency spacing (with the
etalon scan mode of the laser).

The reflected sample beam and the reference beam are combined via a non-polarized beam splitter. Some incident
light in the sample beam is internally reflected on the surfaces of the beam splitter and may enter the camera without
arriving at the sample. To remove such unwanted signal, we slightly rotate the beam splitter by about 4 degrees to
create a misalignment [80] so that internal reflections from its surfaces do not enter the camera sensor.

To balance the power between the two interfering beams, we adjust the Fresnel rhomb before the polarized beam
splitter so that the reference beam intensity is comparable to the scattered light intensity from a piece of white paper.

The two Fresnel rhombs after the polarized beam splitter are used to control the polarization of the reflection
matrix: the one on the sample beam adjusts the incident polarization, and the one on the reference beam adjusts the
detected polarization. In this work, both polarization states are set to horizontal.

To improve the phase stability (characterized in Supplementary Sect. II B), we enclose the setup to reduce air flow
and to block acoustic noises. We control the setup remotely, which also avoids vibrations caused by onsite operations.

B. Control and automation

We automate the measurement with a LabVIEW program that controls the laser, attenuator, wavemeter, galvo
scanner, and camera. The flow chart of this process is shown in Supplementary Fig. 2.
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for devices scanning - recording

Read wavelength value
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All the Tune laser L 2
wavelengths A R YES
have been ttenuator
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Supplementary Fig. 2. Flow chart of the automated measurement.



A while loop traverses all frequencies. In each iteration of the loop, we first tune the laser and the attenuator
simultaneously. Currently, we scan the laser frequency by mechanically tuning a birefringent filter in a scan-and-stop
mode. The filter position is set based on a lookup table, and we use the wavemeter to verify the actual output
frequency (with an accuracy of 600 MHz). It is also possible to scan the birefringent filter continuously without
stopping, in which case the laser output will jump between discrete frequencies with 0.286-THz spacing at a scanning
rate of about 20 msec per frequency. Note that SMT adopts a non-uniform discrete Fourier transform, so it is not
necessary to have the frequencies equally spaced.

The recorded image intensity can change substantially across frequencies due to frequency dependencies of the laser
power and of the camera sensor efficiency. To maximize the signal-to-noise ratio, it is best to balance the measured
intensity across frequencies such that the camera photon count is close to uniformly high but does not saturate the
sensors. Therefore, we use an attenuator (Newport Motorized Variable Beam Splitter VA-CB-2-CONEX) to provide
a frequency-dependent attenuation by rotating a half wave plate.

We operate the camera with a frame rate of 64,000 Hz and a region of interest of 256x256 pixels (corresponding
to a FOV of 51.2x51.2 pm? on the sample). To avoid saturating the camera, we use an exposure time of 1/300,000
second, smaller than the inverse frame rate. At each frequency, the camera records 5030 frames (corresponding to
5030 incident angles). The camera sends a TTL signal to trigger the galvo and start the angular scan, with a delay
of less than 0.2 msec. To operate the dual-axis galvo scanner, we use a multi-function data acquisition device (DAQ)
(Measurement Computing DAQ USB-1608GX-2A0). One analog input of the DAQ receives the trigger signal from
the camera, and two analog outputs of the DAQ controls the operating voltages for the x and y scanner heads with
a sample rate of 400,000 points per second. We use a triangular waveform for the fast z-axis scan and a step-shaped
waveform with 80 steps for the slower y-axis scan, with a bidirectional raster pattern over a circular region in the
angular space that is slightly larger than the back focal plane of the objective lens.

C. Off-axis holography

We use digital off-axis holography [53] to retrieve the complex-valued reflected fields of the sample beam, containing
both amplitude and phase information. The interference pattern I(r) (r| is the transverse position) recorded by the
camera is a superposition of the reference beam Uref(rH)éref in é,ef polarization and the sample beam Us(r”)éref +
Usl(rH)é 1 which may contain both é,.s and its orthogonal é; polarization. The reference beam is close to a plane

Us(ry) + e

shows an example of I(r|) with the sample being a piece of white paper; the interference fringes show up as the
anti-diagonal stripes in the zoom-in. We take the 2D Fourier transform of I(r|) with respect to r| = (z,y),

2
wave propagating along k¢ direction, so that I(r) =~ + ‘USJ-(rH)|2. Supplementary Fig. 3a

2 *
FI) = F ([0 + U + 1Uret]?) + F (U2 Urer) + F (UuUieg)
2 r 7% re 7 re
~ F (UL + [ + Ukt ) + 02y — K1) + Ol + KD, (s1)

where k| = (kz,ky) = kﬁ“t is the in-plane components of the outgoing momentum. The first term of Eq. (S1) forms
the zeroth-order signal. The latter two terms (which contain the complex field of the sample beam U, in momentum
space) form the 4-1%%-order signal and are shifted by ikﬂef in the k|| space. When \klrlef| is sufficiently large, the 1%
order signals will be separated from the zeroth-order signal in k;| space (upper figure of Supplementary Fig. 3b),
and we can obtain U, by truncating the —15%-order signal and shifting it back to the center of the Fourier space.

An opaque medium generally scatters light toward all possible outgoing directions, so the sample field F (Us) covers
a disk with radius ko - NA in the momentum space (where kg = 27/A and A is the vacuum wavelength), limited only
by the NA of the objective lens. Similarly, F (|US|2 + |USJ-|2) covers a disk with radius kg - 2NA in the momentum
space. To separte the zeroth-order and the +1%%-order terms, the angle of the reference beam must be large enough
that |kﬂef| > ko-3NA. An angle much larger than this threshold is not desirable since it makes the interference fringes
narrower and harder to resolve. Specifically, the maximal |k;| and |k,| components of F(I) must be smaller than
7 /3 pixel t0 be resolved by pixel resolution dzpixel. Here, we set \kﬂef| ~ 1.65ky (corresponding to a reference beam
angle of about 1° prior to the 100X magnification), while 3NA = 1.5. To reduce the maximal |k;| and |k,|, we use an
azimuthal angle of ék‘rlef ~ 45°. In this case, max|k;| = koNA + |kﬂef|/ﬂ.

From 7/d%pixel > max|k;| and |kﬂef| > ko - 3NA, we get the largest pixel resolution one may use for off-axis

holography is dzpixel < A/[2(1 + %)NA] ~ A/(6.24NA).
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Supplementary Fig. 3. Complex field retrieval with off-axis holography. a. The interference pattern I(r)) formed

by the scattered light from a piece of white paper Uséof + Us-é, and the reference beam Userérer. b. 2D Fourier spectrum

F(I). There are three circular bright regions: the middle one contains the zeroth order and the other two are the 1% orders,
- ref

F (UdUrer) and F (UsUjye). With a plane-wave-like reference beam User(r)) ~ ¢™I" "I the minus one order is approximately

the sample field Us shifted by —k"lef. Thus, U can be obtained by shifting the minus one order back to the center of Fourier
space. c. The retrieved field when the sample is removed (i.e., measuring the reflection of air) shows a peak that comes from
reflection by the objective lens. d. The retrieved complex scattered field from the sample. Data outside the NA range and
near the objective lens reflection are excluded (gray regions).

A white-paper sample produces sufficient large-angle scattered light that the perimeter and the center of the +15%-
order terms can be accurately identified, from which we obtain kﬂef. When using discrete Fourier transforms, the pixel

size in momentum space is 6k = 27 /FOV. To obtain a U, centered at kﬁ‘“ = 0 without restriction of the discrete Jk,

we multiply I(r) with ™™ T before taking the 2D discrete Fourier transform.

For the reflection matrix, we only keep data points of Us(kﬁ“t) with |k‘|’|“t| < ko - NA. Within the NA range, the
sample beam also includes unwanted reflected light from the objective lens. For an incident plane wave at direction
kin, such objective lens reflection shows up mainly near kﬁ“t = —k"H“ in Fourier space; we can clearly see it when we
remove the sample (i.e., measure air only) as shown in Supplementary Fig. 3c. For the reflection matrix data,
we exclude k‘l’lUt near such objective lens reflection angles. We obtain the location of the objective lens reflection by

searching for the maximum in the region near k‘|°|”‘t = — 1H“ Such objective lens reflection signal spreads more in

the Fourier space when the incident angle is closer to normal incidence, so we also exclude more kﬁUt there. Note
that such exclusion does not fully remove the reflection from objective lens; the residual objective lens reflection is
currently the main limiting factor on the sensitivity of our detection (Supplementary Sect. IIC). Supplementary
Fig. 3d shows the amplitude and phase of U (k“’lut)7 with the excluded data points shown in gray.

This U'S(kﬁ“t) = R( ﬁ“t, ‘”“7 w) forms one column of the hyperspectral reflection matrix. Note that |R(kﬁut, ‘H“, w)|?
is proportional to the detected power but not the reflected power since the camera sensor efficiency varies with the
wavelength. The incident power also varies with both the wavelength and the incident angle. We do not normalize
R(kﬁ“t, i”“,w) by the incident power and sensor efficiency since doing so increases both noise and acquisition time.

Because we scan incident angles across a range that is slightly larger than the NA of the objective lens (Supple-
mentary Sect. I B), some incident angles do not go through the objective lens. To exclude such incident angles, we
exclude inputs where the mirror reflection does not show a strong peak. We also exclude the first 10 inputs at each
wavelength where the galvo scanning has not yet started.

After the above exclusions, the number of input angles averages to around 3900 (ranging between 3830 to 3900
at different frequencies), and the number of output angles averages to around 2900 (ranging between 2210 to 3590).
Note that the incident angles are slightly over-sampled, with spacing finer than 27 /FOV.



D. Data acquisition time

It takes 180 seconds to complete the data acquisition across the 250 frequencies x 5030 input angles for the USAF
target under tissue sample, with data captured at a resolution of 256x256 pixels for each incident angle. This
speed is sufficient since the phase drift in the system (Supplementary Sect. IIB) is only 7/8 radian per minute and
can be removed during dispersion compensation. The angular scan (running at the camera frame rate of 64 kHz;
Supplementary Sect. IB) took 79 msec per frequency, totaling 20 seconds for the 250 frequencies. The remaining 160
seconds are used for the laser frequency tuning. To simplify the control, we currently separate the frequency scan and
the angular scan: the camera recording starts only after the laser and the attenuator report back as having completed
their tuning, and the next frequency tuning starts only after the previous angular scan completes. The birefringent
filter used for the frequency tuning needs to accelerate and decelerate for every frequency requested, which contributes
to most of the overall measurement time.

As mentioned in Supplementary Sect. I1 B, one can also continuously scan the birefringent filter without stopping,
which results in the laser output jumping between discrete frequencies with 0.286-THz spacing at a scan rate of 20
msec per frequency. If one has a camera that operates at 250 kHz frame rate (e.g., Phantom TMX-5010 with 640x 320
pixels [81]) and scans the camera, galvo, and laser concurrently, the data acquisition across the 250 frequencies x 5030
input angles can complete in 5 seconds.

II. CHARACTERIZATION OF RAW DATA

A. Spectrum

From the measured hyperspectral reflection matrix R(kﬁut7 kiH“7 w), we calculate the angle-averaged detected power

as a function of the wavelength,
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Supplementary Fig. 4 shows the normalized A()) for the USAF-target-under-tissue sample and the dense nanopar-
ticle colloid studied in this work. The former was measured at 247 frequencies with A from 741 nm to 899 nm, and
the latter was measured at 275 frequencies from 756 nm to 943 nm. Both were measured with a frequency spacing of
df = 0.286 THz. The two spectra differ because the laser output changes between the two measurements.
The power incident on the sample, measured with a power meter at the sample position, ranges from 0.02 mW and
0.2 mW depending on the wavelength.

B. Phase stability and noise

To evaluate the phase stability, we monitor how the measured reflection phase of a mirror changes over time
(Supplementary Fig. 5a). In the short term, the phase fluctuates with a standard deviation of 0.09 radian. In the
long term, the phase drifts slowly at a pace of about 7/8 radian per minute, likely due to temperature change.
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Supplementary Fig. 4. Angle-averaged reflection matrix spectra given by Eq. (S2).
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To quantify the noise, we examine the short-term fluctuations of the reflected fields from a white-paper sample
(Supplementary Fig. 5b). These short-term fluctuations come from a combination of vibrations, air flow, dither
noise in the galvo scanner, dark current and read noise and photon shot noise at the camera sensor, and phase
and amplitude noise from the laser. Both the real part and the imaginary part follow a Gaussian distribution
(Supplementary Fig. 5c). The averaged standard deviation, ﬁ D oout %(Ureal + Timaginary ), is around 1% of the

averaged amplitude ﬁ Zout<|R|2). Note that this is the noise per element of the reflection matrix. The SMT

image is built by summing over many (around two billion in our experiment) matrix elements, after which the signal-
to-noise ratio (SNR) is boosted significantly. We quantify the SNR of the SMT image in the next section.

C. Sensitivity of SMT

The sensitivity is defined as one over the smallest reflectivity at which SNR = 1. It is common to assume the SNR,
to be proportional to the sample reflectivity, under which the sensitivity equals the SNR when the sample is a mirror
with unity reflectivity; we use this approach here. We take three hyperspectral reflection matrix measurements under
the same condition: the first two are performed for two different mirror samples and the third one is performed for
air with no sample. We use the first mirror measurement to correct for the dispersion and aberrations in the optical

system (Supplementary Sect. III B) and perform SMT reconstructions using each of the three data sets to obtain a

. . mirror,self . . mirror,cross P— air .
self-corrected mirror image Igy;p , a cross-corrected mirror image Igyip , and an air image I&§ . Comparing

the peak of Iénl\i/[réor’cross and the average of I&\ 1, we find the sensitivity to be 90 dB (Supplementary Fig. 6).
The SMT sensitivity may be limited by both measurement noises (as characterized in the previous section) and the
residual reflection from the objective lens. In the self-corrected mirror image, most of the phase noises are removed

during the correction stage to yield a constant phase, so Ig;if%onsen provides an estimate of the would-be peak intensity
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Supplementary Fig. 6. Sensitivity of SMT. Normalized axial intensity of SMT images of a mirror with cross-correction
Igur "% and of air I§yr. The intensities are evaluated at the center of the FOV, at = y = 25 pm. The peak of Igp ™

is 90 dB higher than the averaged air intensity (which comes primarily from the residual reflection of the objective lens).

in the absence of noises. We find the peak of Ig‘l\iféor’seu to be 2.5 dB higher than that of Ignl\if;or’cross, indicating that
noises misalign the phases to reduce the SMT signal by roughly a factor of 2.

If reflection matrix data with k; near the peak of the objective lens reflection signal is not excluded (Supplementary
Sect. I C), I3 would be 12 dB higher, showing the importance of such exclusion. However, such exclusion does not
fully remove the objective’s reflection because the signal from the objective’s reflection also exists at other k|| points;
several factors contribute: the incident beam does not form a point focus on the back focal plane of the objective
lens due to aberrations of the optical system and the laser beam profile, and reflection from the objective lens can
come from multiple interfaces beyond the back focal plane. In the absence of noise and the objective’s reflection,
I3 would be zero. Therefore, to estimate the contribution of the residual objective lens reflection, we perform a
fourth reflection matrix measurement with the laser turned off, which fully removes the objective’s reflection while
preserving the camera’s dark current and read noise. The resulting laser-off SMT image is 9 dB lower than Igli\ﬁlT. This
indicates that the residual reflection from the objective lens contributes more to our SMT sensitivity than noises do.
In our current measurement, the objective lens reflection shows up as a coherent background because the coherence
length of our tunable CW laser is far greater than the path difference between the objective lens and the sample. If
a sensitivity much larger than 90 dB is necessary, one may reduce the coherence length of the laser and/or clean the
incident beam to make the objective-lens-reflection exclusion more complete.

III. DIGITAL CORRECTIONS AND CALIBRATIONS
A. Incident angle calibration

In addition to the sample of interest, we also measure the hyperspectral reflection matrix of a mirror (Thorlabs
Protected Silver Mirror PF10-03-P01). The specular reflection from the mirror produces a strong peak in Fourier

in

space (Supplementary Fig. 7) located at kﬁut = kiHn, which we use to calibrate the incident angle k” .

We also use the mirror data to determine the precise location of the reflection from the objective lens in the
momentum space (the weaker peak in Supplementary Fig. 7) so we can exclude data points at those kﬁut from our
sample reflection matrix as described in Supplementary Sect. I C.

After such calibration, the input momentum and the output momentum of the reflection matrix both lie on the
same grid points with spacing 0k = 27 /FOV (Supplementary Sect. IC), for all frequencies. But the number of inputs
and the number of outputs both depend on the frequency. Recall that the incident angles are slightly over-sampled
(Supplementary Sect. I C), so some incident angles share the same mirror-reflection peak location. For the convenience
of further processing, we average over data points with the same kh“ and pad zeros at the excluded kﬁ“t and at large

k™/°" such that the size of matrix R(k“’lut7 khn, w) is 3761 x 3761 at all frequencies and that all frequencies share the

I |
same list of k| (which equals the list of kﬁut).
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Supplementary Fig. 7. Mirror reflection data. The specular mirror reflection gives a strong peak in Fourier space located
at k| = kh". Subtracting the peak phase from the sample reflection matrix corrects the dispersion and most of the input
aberrations in the optical system. The reflection from the objective lens shows up as a much weaker peak than the mirror peak.

B. Reference plane and corrections for input aberrations and dispersion in the optical system

With the off-axis holography (Supplementary Sect. IC), the reflection matrix is associated with outgoing plane
waves in air, e’ (*=r%b such that different k2" share the same reference point r®% = (0,0, z%%) with 22 being the
focal plane of the objective lens in air. It will be convenient if the incident plane waves also have the same reference
plane, e’k (r— riet) However, the galvo scanning introduces an additional propagation phase shift A¢§Cdm(k‘”n7 w) that

varies with the incident angle ” and frequency w. Since the reflection matrix of the sample and that of the mirror

share the same Aggean (ki®,w), we record the phase ¢mirror(K*,w) = arg | Rmimor (K{"° = ki, k", w)| at the specular
I I I o=

reflection peak kﬁut = in of the mirror reflection matrix, and subtract quirror(kiH“,w) from the phase of the sample

reflection matrix for all H and all w. Hereafter, we use R’ (kOllt k‘”n, w) to denote the sample reflection matrix after
this subtraction. This R’ (kﬁllt kIHH, w) has its input reference plane and output reference plane both at the focal plane
of the objective lens, which equals the z position of the calibration mirror, z;”g = Zmirror-

In addition to the propagation phase shift Aggcan(k hn, w) from galvo scanning, the mirror reflection matrix also

contains the aberrations and dispersion in the optical system in the input path A¢5y5( e w) and those in the output

path Ag>® (ko‘“,w). Therefore, ¢mirror(k“n, w) = Aqi)scan(klun, w) + Aqﬁsys(khﬂ, w) + Aqﬁiﬁ(kout = kh“, w). When we

out
subtract gbmlrmr( ““, w) from the phase of the sample reflection matrix, we not only remove A@gcan (K| I M w); we also

correct for the aberrations and dispersion in the input path A¢:® (k! [ w). However, A¢gy (k" w) got subtracted

along the input angles kIHn instead of along the output angles klcl’ut Therefore, the phase of the calibrated reflection

matrix arg | R’ (kj"*, kiH ,w)| still contains aberrations and dispersion in the output path in the form of Aggy (ki"*, w)—
A¢5Vb (kout — Hn’ )

out

C. Correction for refractive index mismatch

The objective lens provides a sharp focus only in the designed background medium. Dry lenses designed to operate
in air without an immersion liquid are the most commonly available and the most convenient to use. But because of
refraction, dry lenses focus poorly inside media with other refractive indices such as water. As illustrated in Supple-
mentary Fig. 8a, a perfect focus to (xf, yr, 287) in air gets diffracted to an imperfect focus at (z, yr, 2¢). The focus
becomes poorer at deeper depths, and the situation is even more severe when a coverslip is used (Supplementary
Fig. 8b). Correction for such degradation typically requires expensive specially designed objective lenses or additional
hardware like spatial light modulators. In SMT, we correct for it digitally.

In the presence of refractive index mismatches, Egs. (1-2) of the main text continue to hold, but we need to be
careful in specifying the reference planes of the reflection matrix, the momenta ki, /ou¢, and the relative coordinates.
To find the correct formalism, we start with a generalized framework. The incident and the outgoing waves are still

10
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Supplementary Fig. 8. Correction for refractive index mismatches. a. A system with a single air-sample interface.
When a dry objective lens is used, incident light from different angles can focus in air but do not focus well inside the medium
due to refraction at the air-sample interface. b. A sample covered by a coverslip with thickness he13S where there is an air-glass
interface and another glass-sample interface. When light is focused to z2'" in air, the focal plane in the sample z;*™ varies with
the incident angle #*", leading to an elongated focus at zr. SMT corrects the refractive index mismatches by converting the
input/output momenta from those in the air to those in the sample medium and shifting the reference plane of the reflection
matrix to the sample surface at z = 0, as in Eqgs. (S13), (S18).

written as superpositions of plane waves

Em Z Em k” ) )uln(r k|| ) ) 7iUJta (83)
k‘H",w

out Z Eout kmt )uout( kﬁllty ) _iUJtv (84)
kout’

with the reflection matrix R’ relating the amplitudes

Eou (K™, w) = Y " R/ (™ ki, w) B (K|, w). (S5)

kin
Il

The R’ (k“)lut kh“, w) here has its input reference plane and output reference plane both at the z position of the
calibration mirror, as described in Supplementary Sect. III B above. The measurements here use a dry objective lens,
so these reference planes are with respect to the would-be propagation of the incident and reflected waves in air. We
denote such “in-air reference plane” by zfg = Zmirror and the in-air reference point by r®% = (0,0, 2%%). The plane
wave profiles u,(r; khn,w) and Uoys (13 k” ,w) include refraction at interfaces, and their relative phases are chosen
such that their in-air reference point is at r.

When there is no interface and when zyjror = 0, we have r;ﬁ =0, uiy(r; kH ,w) = etk T gy (g kﬁ“t, w) = etkoutT
with ki, = ( ‘“n, (w/e)? — |kh’“|2) and koys = (k89 —, /(w/c)? — |kﬁ“t|2), and we directly obtain Eqgs. (1-2) of the

I
main text with R = R’.
When there are interfaces, we need more careful definitions for ki, kout, and R, as we describe below.
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1. Single-interface index mismatch

Consider a single air-sample interface at z = 0 (Supplementary Fig. 8a) with refractive indices n,; = 1 and
Ngam- Here,

. eikﬁir-(r—r?&) 2 <0
Ui (I"km w) = o sam . pair air B (86)
R (I el(kin r kz,inzref)7 2>0
with k25, = /)2 — KPP, B = [l e — [P, 100 = (0 35,), and g™ = (7, k). . (S6)

ensures that the in-air reference point is placed at r = rﬁé‘; and that i, (r; k)|, w) is continuous across the air-sample
interface at z = 0. Since we are not interested in imaging the interface, we ignore the interface reflection at z = 0 and

the resulting amplitude change (i.e., Fresnel coefficients) in w;,. Similarly,

ikair '(r_rair
t e Fout ref z2<0
Uout (I‘, kﬁu ,w) == i(ksam~l‘—k‘air ’ L2ir (87)
e out z,out “ref s z > 0
: air _ 2 _ out |2 sam __ __ 2 _ out |2 air __ out r.air sam __ out f.sam
with kz,out - (W/C) |k|| | ’ kz,out - \/(nsamw/c) |k” | ) kout - (kH >kz,out)7 and kout - (kH >kz,out)'
A dry objective lens that focuses to point rii" = (z, y¢, 28'") in air produces an input wavefront

~ . : _jkair (pair _air
ESr (ki w) =€ i (e —rrer) (S8)
such that the incident wave is
Zki“ " eik?];r»(rfrﬁ;r)fiwt’ 2<0
,

BS(et) = 3 B o) (s K w)e ! = { M
K w Zki““,w €

in

s1.Sam sp.air air o
ki =ikt et >0

When 22 < 0, E2'(r,t) forms a perfect spatiotemporal focus at r = r@ ¢ = 0, since all terms in the double
summation Zki”n’w add up in phase. But when the desired focus is in the medium (with z'* > 0), such a dry

objective lens no longer focuses well. At r = r’ ¢ = 0, the different terms in the double summation have relative
phase et FZlin =kl ) 2t ", no longer in phase. As illustrated geometrically in the top panel of Supplementary Fig. 8a,
the spatial focus is now shifted to ri, = (¢, v, 2¢), Where the nearby angular components (but not all angular
components) add up in phase. For small NA (where |k1H“| K w/e), 2t = (Ngam/Mair) 28", and the pulse arrives at rjy,
at time t = tf = (Nsam2t — nairz?ir) /¢, which compensates for the slower propagation in the medium and the longer
distance it needs to propagate (to z; instead of z2'). So, E%"(r,t) forms an imperfect spatiotemporal focus at r = riy,
t = t;. Note that to align the temporal gate with the imperfect spatial gate, the necessary pulse arrival time t¢
depends on the depth z; of the focus.

To form an ideal spatiotemporal focus at ri, = (f, yr, 2¢) inside the medium, we digitally adopt a modified input
wavefront

_kair Zair

~ (kg R
Eu( 1Hn,w) = M T =T 20 (S10)
When focusing inside the medium (z¢ > 0), the resulting incident wave

Bin(e1) = 3 Bia(kfP, w)uin (0 kP, w)e 0 = 37 (M rm) et (s11)

K K

has all of its angular and spectral components add up perfectly in phase at r = ry,, t =t = 0. The pulse arrival time
tr = 0 here is independent of the focal depth z.
Combining Egs. (S4, S5, S7, S10), the outgoing field in the sample region (when z > 0) is

Bow(r, i) = 3 R(ROVE KD, )i 600 r i m = (R KL 288 ] (S12)

out Jin
jj ket
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We align the input spatial gate with the output spatial gate by setting r;, = r, and then align the temporal gate with
the spatial gates by evaluating Fy,t at time ¢ = ty = 0. The resulting index-mismatch-corrected SMT image is

Usr(r) = Bou(r,t = ey = 1) = 3 0ol TRAG K w), (S13a)
ket i
R(K{™, ki, w) = e~ Feow =Rzt B (k9™ ki, w). (S13b)

This recovers Eq. (1) of the main text. Eq. (S13b) shifts the reference plane of the reflection matrix: the original R’
has its in-air reference plane at z = 22.f = Zmirror, and the new R has its in-medium reference plane at the air-sample

interface at z = 0. We also see explicitly that SMT uses momenta k$??  inside the sample to focus inside the sample

in/out
medium.
2. Double-interface index mismatch
For a sample under a coverslip with thickness k855, there are two interfaces: an air-glass interface at z = —hglass

and a glass-sample interface at z = 0 (Supplementary Fig. 8b). We choose the zero of the coordinate such that z
is the depth into the sample. Here,

eiki:r<(r7r§; , 2z < _hglass
Ui (15 K@) = § @R TR RIS ptass 4 < (S14)
B N N
and
eik:ilrt'(r*r{rjg , z < 7hglass

-r.glass | g air lass air glass lass
Uout(I'; kﬁut’w) = etlKour Tk Gue (h® %420 ) +EZ o h® ]’ _pglass <0 (815)

ei[kii‘é"F—kif‘;ut(hg1“5+z;“é§)+kfﬁihglm]’ 2>0

which ensure that the in-air reference point is at r = r®% and continuity across the interfaces. The definitions
lass

k& —

zin

are the same as in the previous section, and we additionally introduce the momentum in the coverslip as
V(i /€)2 — kP2, IE™ = (i, REG), REES, = = (ngassto /)% — k]2, and KEL® = (i, KECY).

z,in z,out out z,out

When computing kglass and k3*™, a rough estimate of Nglass and ngam Will suffice since we also perform dispersion
compensation and wavefront optimizations later. Here, we take ngiass(w) to be that of SCHOTT D263T Thin Glass [82]
and we take nsam (w) to be that of water [83] and polydimethylsiloxane (PDMS) [84] respectively for the USAF-target-
under-tissue sample and the nanoparticle colloid sample, with data from refractiveindex.info [85]. If the material is
unknown, one can carry out an image metric optimization (similar to the dispersion compensation in Supplementary
Sect. IITE below) to estimate its average refractive index.

To create an ideal spatiotemporal focus at ry, = (x¢,y¢, 2¢) inside the sample (with z¢ > 0), we digitally generate
an input wavefront

air glass

~ . _ilRsam . pair (pglass ass p glass
Bin(P, ) = eI Fon 2 (0 ) LR ($16)

Like Eq. (S11), the resulting incident field Fi,(r,t) forms an ideal spatiotemporal focus at r = ry,, ¢ = 0. The
corresponding output field inside the sample (z > 0) is
Eout (I‘, t; I'in) = Z R/(kout IHH, w)ei[kﬁx{t‘lr_kis:m'l‘in_(k:i,gut_k:ijn)(hgla&""z?ei:;)"‘(kil,:zst_ki;l,?ss)hglass_i“’t] (817)

o :

kﬁut ’kiHn W

As before, we align the three gates to obtain

; sam __ aam . 3
Gsmr(r) = Bou(r,t =0y =1) = Y /Mo TRk KR, w), (S18a)
kij® ke
: . ir air lass air - p.glass glass lass .
R(kﬁ‘“, i w) = e~ ik o —k ) (RE 4200 i (k2 50—k 107 )h® R’(kﬁ‘“, i w), (S18b)

which again recovers Eq. (1) of the main text. The original R’ has an in-air reference plane at z = zfg = Zmirror- Lhe
new R has its in-medium reference plane at the glass-sample interface at z = 0 [by shifting the reference plane to the
air-glass interface with the first factor of Eq. (S18b) and then to the glass-sample interface with the second factor of

Eq. (S18b)].
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D. Layer-thickness measurement and depth calibration

Accurately correcting the refractive index mismatches requires accurate knowledge of the coverslip thickness helass
and of the reference plane location zraé§ = Zmirror- Lhey are also needed for us to determine the precise imaging depth.

To determine h#'# and 22, we first place the air-glass interface at the objective lens focal plane, which makes the iris
in the incidence path clearly imaged on the camera (Supplementary Sect. IA). We then use the motorized translation
stage to shift the sample backward along the axial z direction by 70 um (so that zf& is known) and then perform
SMT to image the glass-sample interface, using the single-interface index mismatch correction of Sect. IIIC 1. The
SMT image gives k8% = 141.5 pum for the USAF-target-under-tissue sample and h#'#% = 154 pm for the nanoparticle
colloid sample. This procedure can be repeated if multiple layers are present.

Then, we move the sample forward to place the air-glass interface at the objective lens focal plane again, shift
the sample backward in z by h812% + 23t " and perform SMT imaging there. Given the depth range of interest, we
use geometric optics to estimate the 22% to set: (h81355 4 z2I) tan 9t = p8lass tan gslass 4 y8am(gair) tan gsam Here,

Z§2M(6211) is the depth of the focal plarrlzf in the sample (illurs?cfrated in Supplementary Fig. 8b), which depends on
the incident angle. 62", §81255 and #5*™ are incident angles in air, glass, and the sample, respectively, related through
Snell’s law: sin #¥" = Nglass SiN gelass — p_ sin@%*™. For the data in this paper, we set zl‘?clf = 678.5 pm for the
USAF target under brain tissue, resulting in the single-angle focal-plane depth ranging from 2§*™(0°) = 965 pm to
2*™(30°) = 1044 pm (with nglass = 1.5 and neam = 1.33) for the angular range (NA = 0.5) being considered. For
the nanoparticle colloid sample, we use zfg = 996 pm, leading to a zf*™(0°) = 1466 pm and 2z§*™(30°) = 1594 pm
(with ngam = 1.4). Note that the depth of field of the SMT image can go beyond the range of z{*™, as described in
Supplementary Sect. VIIIB.

In SMT, the absolute image depth z is quantitatively determined by the other variables thanks to the index-

mismatch correction. Given the frequency w measured by the wavemeter, kﬁ“t from off-axis holography (Supple-

mentary Sect. 1C), ‘”“ from incident angle calibration (Supplementary Sect. IIT A), h#'3% measured through imaging
the glass-sample interface, zﬁ‘; set by the motorized translation stage, and the estimated refractive indices, we can
reconstruct the image ¥sur(,y, 2) with a quantitative depth coordinate z.

E. Compensation for sample dispersion

Next, we correct the dispersion of the sample and the output path of the optical system by introducing a frequency-
dependent phase shift §(w) to the scattering matrix. We assume the dispersion is spatially invariant and only depends
on the frequency. Since the angles do not affect dispersion, we pre-compute the angular summations as

7, — i (kout —Kin)* i
Ysmr(r,w) = Z ¢ (Kout—kin) rR(kﬁut, k', w) (S19)
Kk
such that Ysmr(r) =3, @) hgnir(r,w) and Tyt (r) = sy (r)|® before we perform wavefront corrections [when
qﬁout(kﬁ“t) = ¢in (k") = 0], following Eq. (2) of the main text. Hereafter, we abbreviate k' and kif™ as koue and kin
for conciseness. To determine (w), we maximize an image quality metric (also referred to as the “objective function”
or “figure of merit” of the optimization)

M=) Isur(r)ln ISMliz(r) (S20)

The precise choice of the image quality metric is not crucial. For example, we have found similar performances with
M' =3 Isur(r) and M” =3 12,1 (r).

For the USAF-target-under-tissue sample, we first scan z and record M for the 2D en-face image at each depth. We
found z; = 994.5 pm is the depth where M is maximized before dispersion compensation. We then perform dispersion
compensation with M summed over positions r in a 3D volume containing z1: z,y € [0,50] nm and z € [970, 1030]
pm. The axial range allows the dispersion compensation to sharpen the axial resolution through the temporal gate.
For the sample of dense nanoparticle colloid, we sum over positions r in a volume spanning z,y € [0,50] pm and
z € [1470,1580] pm. A relatively coarse 0.7 x 0.7 x 1 pm? voxel size is used to speed up the summation. We choose
the normalization constant Iy to be 1073 times the maximal Igyt before optimization. Our experience is that the
value of Iy does not change the result as long as it is not too large.

While it may be tempting to allow the phase 6(w) at every frequency to be an independent variable in the op-
timization, doing so will lead to overfitting and make it easier for the optimization to get trapped in a poor local
optimum given the very high dimensionality of the parameter space (see Fig. 2b of the main text). To regularize the

14



b 4.2 € 4117
2 4116}
4115}
3.8
4114}
23.6 =
4113}
34 4112
0 y 3.2 4111
-1000  -500 0 500 1000 -1000  -500 0 500 1000 -1000  -500 0 500 1000
aq (radian) ao (radian) as (radian)
d 40
0.3
—~20
C
R
©
S0
1
=
S O
-20 —Useal,aQ,a;;
_Usedg,&g
-40
0.7 0.8 0.9 1
A (um) 0

Supplementary Fig. 9. Dispersion compensation for USAF target under tissue. a—c Normalized SMT image quality
metric M = > Ismr(r)InIsmr(r) as a function of the dispersion coefficients G;. d The optimized 6(w). e The USAF target
image at z = z1 = 994.5 pm before dispersion compensation. f The USAF target image at z = ztarget = 977.5 pm after
dispersion compensation. Scale bars: 10 nm. Note that prior to this sample dispersion compensation, we have already removed
the dispersion in the input path of the optical system through a calibration mirror (Supplementary Sect. III B) and removed
the dispersion from refractive index mismatch (Supplementary Sect. IIIC).

optimization while reducing the dimensionality, we express 6(w) as a third-order polynomial [43],

2 3
+ az (w wo) +as (w w0> ;
wo wo

where wyq is the central frequency, and a; (j = 1,2,3) are dimensionless dispersion coefficients corresponding to the
inverse group velocity (correcting for axial shifts of the temporal gate), group velocity dispersion (correcting for
symmetric pulse broadening), and third-order dispersion (correcting for asymmetric pulse distortion), respectively.

To maximize the image metric M while avoiding poor local optima, we optimize one variable at a time. We first
align the temporal gate with the spatial gates by scanning a; to obtain a*** while keeping as = a3 = 0. Then, we
perform symmetric pulse compression by scanning as to obtain ay'®* while keeping a1 = a*** and as = 0. Finally,
we perform asymmetric pulse compression by scanning as to obtain a§'®* while keeping a; = ai"®*, as = ay'™*. This
process is shown in Supplementary Fig. 9 for the USAF-target-under-tissue sample. The scanning is the most
important for a; as its objective function landscape is the most nonconvex.

To further push the performance, we additionally perform a local gradient-based optimization to optimize all three
variables simultaneously, using (a]"**, a5'®*, a5**) as the initial guess. The gradient of M with respect to @; is

=2 Im{ [1 in ISMIi(r)} 7’[}gMT(f)%/;SI\/IT(r,w)e“’(w)} (“’”’)j :

wWo

w — Wy

i (S21)
wo

oM
0@

(S22)

To compute this gradient efficiently in MATLAB, we use vector-matrix multiplications to perform the spatial and
frequency summations. Specifically, Isvr(r;), ¥&yr(ri), and O(wy) are each stored in a row vector, I, ¥*, and 6.
YsmT(rs, wy) is stored in the ik element of a matrix 1, and (“”“%0“0)3 in the kj element of matrix 2. We then compute

the gradient as a row vector by
1 * | 7 0
= —2Im L+ln— | @¢* ¢ @™
0

where ® denotes the Hadamard (element-wise) product between row vectors, and the other products are vector-
matrix products. Note that the matrices 1) and € are both pre-computed and fixed; only the vectors I, ™, and 0
are updated during the optimization. We use the NLopt library [49] for the optimization, adopting the low-storage

oM
oa

(S23)
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Broyden—Fletcher—Goldfarb—Shanno (L-BFGS) algorithm [48]. L-BFGS is a second-order quasi-Newton method that
uses the gradient and an approximation of the Hessian matrix of the objective function to determine the search
direction and estimates a step size. We set the upper and lower bounds of @ to be (a7"** £ 100, a5®* £ 100, a3®* £+ 100)
in the optimization, with the stopping criterion being when both the objective function M and the variables a change
less than 0.01%.

Supplementary Fig. 9e—f and Supplementary Fig. 15a-b show the images before and after dispersion com-
pensation for the USAF-target-under-tissue and the nanoparticle colloid samples respectively. We then determine
the depth Ziarget = 977.5 um of the USAF target as the depth z at which the en-face image quality metric M is the
highest.

F. Input and output wavefront corrections

After dispersion compensation, we optimize angle-dependent phases (Z)in(kiun) and ¢)0ut(k“’|“t) to correct for the output
aberrations of the optical system and for the aberrations and multiple scatterings from the heterogeneous sample.

1. Zernike-regqularized image metric optimization

We maximize the same image quality metric M as in Eq. (520), with the spatial summation summing over one or
several en-face —y planes at depths z; (j =1,2,...) inside the volume of interest. For the USAF-target-under-tissue
sample, we use one depth 2; = Zarger since the target is planar. For the nanoparticle colloid sample, we divide the
full volume (across 110 um depth of field in 2) into 16 overlapping sub-volumes, and pick five equally spaced slices
21, 22, ..., z5 Within each sub-volume where z; and z5 are the two ends of the sub-volume; the same wavefront correction
is then applied to all slices within each sub-volume. We treat the wavefront corrections ¢y ( h“) and dout (kﬁut) to be
frequency independent.

Since the spectral phase #(w) has been determined and since z = z; is fixed, we pre-compute the frequency
summation to obtain the depth-resolved “synthetic time-gated reflection matrix” at each depth z;,

R K 25) = D el TRD5 RAGH K w). (S24)

Recall that kin = (kj!', k"), kour = (kj"*, k2"*). Note gin/ont — +/Tk|[? = (nsamw/c)? depends on the frequency w.
For the optimization over ¢y ( h“), we further pre-compute the summation over the outgoing angles for each j, as

Bl i 2) = 3 06 e i ) ot g ) ($25)

Kkout
I

where r| = (z,y), such that Ysyr(r),2;) = Ek;“,, ew‘“(killn)wgﬁ}(r”,ki”“;zj) on the j-th slice. For the ¢0ut(kﬁ“t)

optimization, we pre-compute

o ) = 3 O RO 0 Rk 1 ). (526)
kin
I

such that sy (r), 2;) = Zkﬁ"t ei%"t(k(ﬁm)¢§ﬁ¥ (I'H,kﬁut; zj). We evaluate r|| on a relatively coarse (0.7 pm)? spatial
grid to speed up the computation.

Like the spectral phase optimization, here it is better to avoid overfitting and not to allow the angular phase at
every incident angle and every outgoing angle to be an independent variable. To regularize the optimization, we
expand the phase-correction maps in Zernike polynomials [806]

) kin kout
iny _ in I uty __ out |
¢in( H ) - Z Cn Zn (k(r)naxNA> ’ ¢0ut (kﬁ ) - Z Cn Zn (k(r)naxNA) ) (827)

n n

where {ci"'} and {c%"'} are the Zernike coefficients (weights), kZ'®* = wpay/c is the vacuum wave number for the
highest frequency considered, and Z,, is the n-th Zernike polynomial. Note that the Zernike polynomials form a
complete basis for functions on a disk, so they can incorporate both the slowly-varying distortions from aberrations
and the fast-changing wavefronts caused by multiple scattering.
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The gradient of the image metric M in Eq. (S20) with respect to {c} is

oM ISMT (I‘“ )% ) * j,in in TN in hn
@ =-2 ' Zkin Im { |:]. +In I—OJ ’l/JSMT (I‘” 5 zj)wé’l\/IT(r” ) k” ; Zj)el¢'“(k“ ) Zn ]{;glaw 5 (828)
LI

and similarly for the gradient with respect to {c9"*}. Like Eqgs. (S22)-(S23), these gradients can be evaluated efficiently
using vector-matrix multiplications. N

We first keep c2" = 0, pre-compute ¢§ﬁ‘T(r|\ ,K|['; zj), and determine {c;'} by maximizing the image quality metric
with the L-BFGS algorithm and with ¢’ = 0 as the initial guess. We set the upper and lower bounds as 10 radians,
with the stopping criterion being when both the objective function M and the variables ¢! change less than 0.01%.
This optimization is very fast since the most time-consuming step of computing wéﬁT(r”,kW; z;) has already been
done prior. Then, we fix {ci'}, pre-compute w%ﬁ‘%(r”,k}f; z;), and optimize {c2"}. We alternate between d)in(kh“)
optimization and ¢Out(kﬁ“t) optimization until when M changes less than 5%, each time using the previous phase
maps as the initial guess.
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Supplementary Fig. 10. Effect of the quadruple summation on the image metric landscape. The right-most
column plots the image quality metric M of the USAF-target-under-tissue sample as a function of two Zernike coefficients of
@out (Kout) when we perform the complete quadruple summation (top row), when we reduce the range of the spatial summation
r (second row), when we restrict to a single incident angle ki, (third row), and when we restrict to a single frequency w (bottom
row) in the evaluation of M.
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2. Image metric landscape without the quadruple summation

Evaluation of the image quality metric M in Eq. (520) [Eq. (3) of the main text] involves a quadruple summation:
summation over space r in Eq. (S20) and the triple gating through summations over Koy, Kin, and w in the evaluation
of Ismt [Eq. (2) of the main text]. As discussed in the main text, all four of these summations are crucial in ensuring
that the landscape of the image-quality metric reflects contributions from the target rather than from the multiple-
scattering background or other unintended contributions. Supplementary Fig. 10 shows the metric landscape as
a function of two of the Zernike coefficients of ¢out(Kout) in the presence of the full quadruple summation and when
one of the summations are skipped or reduced. We see that with the full quadruple summation, the metric landscape
in this case exhibits only one local optima, so the outcome of the optimization is not sensitive to the initial guess.
Without the quadruple summation, the landscape exhibits many local optima, and the optimization may end up in
any of these local optima depending on the initial guess. The multitude of local optima arises because each speckle
in the multiple-scattering background may be maximized by a different wavefront, unlike the target signals where all
targets within the same isoplanatic patch share the same optimal wavefront.

8. Progressive reduction of zone size and increase of Zernike order

Since the 50 x 50 pm? field of view is larger than the isoplanatic patch size at the depths we consider, the spatial
variation of the wavefront corrections must be accounted for. A simple strategy would be directly performing wavefront
optimizations within spatial zones smaller than the isoplanatic patch size. However, as described in Sect. IT of the
main text and illustrated in Supplementary Fig. 10, summing over more spatial points inside the isoplanatic patch
can boost the relative contribution of the target signals, making it less likely for the optimization to get stuck in a
poor local optimum that corresponds to optimizing speckles. Therefore, the ideal zone size is the isoplanatic patch
size—the maximal zone size within which the wavefront correction is invariant. As mentioned in the main text, the
isoplanatic patch size depends on the order of the Zernike polynomials. This motivates us to adopt a progression
strategy: first optimize the image over the full field of view with the low-order Zernike polynomials and with the whole
image sharing the same phase map, then bisect the image into 2 x 2 zones and optimize the wavefronts for each zone
while adding higher-order Zernike polynomials. The wavefronts obtained from the previous (larger-zone) optimization
are used as the initial guess for the smaller zone; such “progression” ensures that the non-convex optimization ends
up in a good local optimum. As we continue to bisect into smaller zones, we observe the image quality to converge,
at which point we stop the bisection; this is where the zone size has become smaller than the isoplanatic patch size
of the high-order corrections.

After optimization, the zones are stitched together to yield the full image. To avoid image discontinuity at the zone
boundaries, we let neighboring zones overlap by 2.4 pnm and stitch them using a weighted average with a linear ramp.

Supplementary Figs. 11-12 show the evolution of the image, the phase maps, and the image quality metric
during this progression process for the USAF-target-under-tissue sample. Here, we use 11, 15, 19, and 22 radial
orders of Zernike polynomials for the full image, 2 X 2 zones, 4 x 4 zones, and 8 X 8 zones respectively (corresponding
to 77, 135, 209, and 275 Zernike polynomials). The number of Zernike polynomials can be relatively flexible, as
long as it is not too small (insufficient to capture the higher-order wavefront distortions) or too large (which causes
overfitting). Note that the z-axis of Supplementary Fig. 12 is the number of objective function evaluations, not
the L-BFGS iteration number. Within each L-BFGS iteration, there is a line search to refine the step size, during
which the objective function may dip.

4. Spatial-basis truncation and angular-basis down sampling

A caveat of such image-metric-based wavefront optimization is that when there are strong scatterers outside the
volume considered in the r summation of Eq. (520), the optimization may overfit by distorting the wavefront to
smear or to move such outside targets such that they contribute to the volume being optimized. Such a nuisance is
particularly relevant for the progression strategy, where targets may lie on the zone boundaries. To address this issue,
we Fourier transform the synthetic time-gated reflection matrix R(k‘mt7 I'32;) in Eq. (S24) to spatial basis

D, kUt kit t 1,1
R(rH rH i 25) Ze I Ze ik rif R( k™, ”n,zj) (S29)
kout kln
set the matrix elements of R(rﬁ“t IHI‘, zj) outside the zone boundary to zero, and then Fourier transform back to the

k|| basis before proceeding with the optimization. Doing so effectively prevents overfitting.
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Supplementary Fig. 11. Progressive bisection and wavefront correction maps for the USAF-target-under-tissue
sample. a—d The wavefront-corrected image during a progression that bisects the area at each step. Scale bars: 10 nm. All
images share the same normalization. White dotted lines indicate zone boundaries, with 2.4 nm of overlap between neighboring
zones. e—l The input and output wavefront correction maps of the zones.

Since R(rﬁ‘“, riH“; zj) has been truncated to a smaller spatial region, we can use R(kﬁ“t, hn, zj) with a larger angular

spacing when we convert back to the k| basis; doing so significantly reduces the computation time. Here, we set the
input angular spacing and the output angular spacing of a divided zone both to 6k, = dk, = \/577/ Waone (slightly
over-sampled above the Nyquist rate of 2m/W,one but down-sampled compared to the original §k = 27 /FOV spacing
mentioned in Supplementary Sect. I C) where W,y is the zone width. Note that the Zernike polynomials in Eq. (S27)
can be evaluated at any set of angular grid points, so we can flexibly choose the angular spacing without affecting the
optimization variables {c"} and {co"t}.

This spatial-basis truncation and angular-basis down-sampling are only used during the optimization. We use the
complete scattering matrix data for the image reconstruction (after the phase maps are determined).
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Supplementary Fig. 12. Evolution of the image quality metric M during the optimization process. Each panel
shows the evolution for one zone as the zone size is reduced. The inset figures on the left and right are the images before and
after optimization. All images share the same normalization as Supplementary Fig. 11.

5. Contribution of the high-order terms

Our wavefront correction employees a large number of variables. In the last iteration of the progression, in each of
the 64 spatial zones and for both the incident and the return paths, we include 275 Zernike polynomials for the USAF-
target-under-tissue sample, bringing the total number of wavefront optimization variables to 64 x 2 x 275 = 35, 200.
One may wonder if all of these variables actually contribute. For example, it is possible that the highest-order terms
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Supplementary Fig. 13. Contribution of the high-order wavefront correction terms. The plot shows the image
quality metric M of the USAF-target-under-tissue sample when the number of Zernike terms per zone is truncated to 2N (N
terms for ¢in; N terms for ¢out), normalized by the image quality metric My before dispersion compensation.
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Supplementary Fig. 14. Contribution of wavefront correction at large angles. SMT image with full-angle correction

(top row) and with correction only for large angles (bottom row). In the latter case, the Zernike coefficients are reused from
the first case but with ¢y, /Out(kh“/ °"y = 0 for all |k‘Hn/ " < 0.38ko. Both wavefront-corrected images are divided into 8 x 8
zones, and we show the phase maps in the zone marked by a yellow dashed box. Scale bar: 10 pm.

have a small amplitude or are large but random numbers that do not contribute to the image quality improvement.

To find out, we take the optimized Zernike coefficients (from Supplementary Fig. 11h,l), keep only N lowest-
order Zernike terms for each zone for each path (i.e., set ¢l = 24 = ( for all n > N), and build the SMT image
with wavefront corrections ¢, ( hn) and @out (kﬁ”t) using the truncated Zernike coefficients. Supplementary Fig. 13
shows the image quality metric M as a function of Zernike terms per zone (2N). We find there is no plateau at
large N, indicating that the highest-order terms do contribute meaningfully to improving the image quality. Note
that there is a dip at 2N < 40, which highlights that the low-order terms are insufficient for correcting the wavefront
distortion and that they need to work together with the high-order terms to provide a meaningful correction.

One may use this plot to quantify a number of effective degrees of freedom in the wavefront correction. For example,
if one is willing to tolerate a 20% reduction of the image quality metric, we can follow the 80% horizontal dashed line
to find that 370 Zernike terms per zone are needed, totaling 23,680 degrees of freedom across the 64 zones.

6. Contribution of the large-angle corrections

As shown in Fig. 4h of the main text, the optimized wavefront correction patterns (bin(kiun) and (bout(kﬁ“t) exhibit
faster oscillations at larger angles, corresponding to higher-order corrections. To assess the importance of these large-
angle higher-order corrections, we compare in Supplementary Fig. 14 the SMT image with full-angle correction

in/out

(top row) and with correction only for angles with |k” | > 0.38kg (bottom row). We see that the wavefront
corrections at large angles provide visible image quality improvement. The wavefront corrections at large angles are
more fast-varying than at small angles near the center of the pupils, indicating the existence of high-order Zernike
modes.

7. Volumetric wavefront correction

Supplementary Fig. 15 shows cross sections of the nanoparticle colloid sample before and after wavefront correc-
tions and the associated phase maps. As mentioned in Supplementary Sect. IITF 1, the 110 pum depth of field in z is
divided into 16 overlapping sub-volumes, and five equally spaced slices within each sub-volume are used to compute
the image quality metric for that sub-volume. The images of the sub-volumes are stitched together similar to how
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Supplementary Fig. 15. Volumetric dispersion compensation and wavefront correction for the nanoparticle
colloid sample. a—d, YZ cross-section images at x = 18 , 24, and 30 pm before dispersion compensation (a), after dispersion
compensation (b), after wavefront correction (c), and after the second dispersion compensation (d). e, XY en face images at
z = 1.476, 1.483, 1.490, 1.496, 1.502, 1.509, 1.515, 1.522, 1.528, 1.535, 1.541, 1.548, 1.554, 1.561, 1.567, and 1.575 mm before
and after wavefront correction. Scale bars: 10 pm. f, The corresponding input and output wavefront correction phase maps.

the spatial zones in z-y are stitched. The wavefront distortions are less severe in this sample, so we only divide up
to 2 X 2 zones in the z-y directions, using 11 and 15 radial orders for the full FOV and 2 x 2 zones respectively (77
and 135 Zernike terms). To maintain the axial resolution, after the wavefront correction, we optimize as and ag in
the dispersion compensation again for each sub-volume.
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8. Potential solution for frequency-dependent wavefront distortions

The current framework assumes sample-induced aberrations are the same for all frequencies. However, in general,
they can be frequency-dependent. In that case, aberration correction has to be carried out for each frequency or each
narrow frequency band where the aberrations remain relatively frequency-invariant. In particular, in Eq. S24 | the
frequency summation is restricted to each narrow frequency band instead of the entire spectrum. Then, aberration
correction is performed on each frequency band. Note that by reducing the frequency to narrow bands, there are fewer
frequencies to sum over to suppress multiple scattering, the wavefront correction is now more susceptible to multiple
scattering noise. To ensure the optimization’s robustness to multiple scattering, the multiscale progression strategy
can also be adopted, assuming the change of aberrations from one frequency to another is gradual. In particular,
optimization can be performed on all frequencies first. Then, the frequency band is gradually shrunk and optimized
again until the image no longer improves. The resulting correction phases of the wider frequency band act as the
initial guess for the narrower frequency band. On the USAF target under mouse brain, this approach achieves a
similar final image as the all-frequency aberration correction shown on Supplementary Fig. 11. Thus, further
testings on other samples are needed to assess if frequency-dependent aberration correction leads to better images
than frequency-independent correction.

G. Digital correction flowchart

Supplementary Fig. 16 shows a flowchart of the digital correction and image reconstruction process.

Hyperspectral Digital dispersion Digital wavefront Image
reflection matrix compensation correction reconstruction
R(KE KiF, ) 6(w) in (K1), bour (Kij") Iswr(r)
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Shift reference basis, and
plane initialize ¢in/out

Supplementary Fig. 16. Flowchart of SMT digital corrections and image construction.

H. Time usage and memory consumption

Supplementary Table 1 summarizes the time and memory usage for the digital dispersion compensation, wave-
front correction, and image reconstruction. All tasks are performed using MATLAB on a personal laptop with an Intel
Xeon E-2276M CPU with no GPU, 2 x 16 GB Dell DDR4 SODIMM 2666 MHz memory, and a KXG60ZNV512G
Toshiba SSD. All data are stored and processed in the single-precision floating-point format. Note that the table does
not contain the time and memory consumption of the data transferring phase between the camera and the computer,
which takes around 20 minutes to load 100 GB of raw interferograms of both the samples and the reference mirror.

IV. RCM, OCT, OCM/CASS, CAO-OCM, VRM, AND EIGENCHANNELS APPROACH

With the measured hyperspectral reflection matrix, we also perform virtual experiments to mimic other reflection-
based imaging methods. Here, we describe how we synthesize reflectance confocal microscopy (RCM), optical coher-
ence tomography (OCT), optical coherence microscopy (OCM) (which is equivalent to “collective accumulation of
single scattering” (CASS) microscopy), computational adaptive optics OCM (CAO-OCM), and “volumetric reflection-
matrix microscopy” (VRM).
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Supplementary Table 1. Time and memory usage of SMT dispersion compensation, wavefront correction, and image
reconstruction. Each -y slice covers 50 x 50 pm?, with a 0.7 x 0.7 x 1.1 pm?® grid spacing. The precomputations refer to
Eq. (S19), Eq. (S24), and the Zernike matrices in Eq. (S27). For the nanoparticle colloid, we perform dispersion compensation
for the full volume together, wavefront correction for one sub-volume at a time (5 slices of {z;} per sub-volume).

Task 2D USAF target under tissue 3D nanoparticle colloid
Time (min) ‘ Memory (GB) Time (min) ‘ Memory (GB)
Data loadlng & 6.8 8.5
precomputation
Dispersion I ar, @3, a3 0.66 1.2 1.0 2.7
compensation
Grad.ler'lt—bfased 0.03 0.03
optimization
Data loadlng & 5.0 0.2 8.7 19
precomputation (per sub-volume)
5.0
I'x 1 zone 1 (per sub-volume)
Wavefront 2 x 2 zones 7.5
. 1.5
correction (all zones) (per sub-volume)
4.0 6.2
4 x 4 zones 1.0
(all zones)
N/A
8 x 8 zones 1.6
(all zones) ’
2D slice given 0.2 0.3 0.03 0.3
precomputation
Image 2D slice w/o 5.0 0.5 75 0.5
reconstruction precomputation
3D volume w/o 152
precomputation N/A N/A (100 slices) 3.5

A. RCM

RCM uses a single frequency w = wrcem with no time gating while spatially filtering both the incident and the
reflected light with a high-NA objective lens [4]. Therefore, to synthesize an RCM image with index-mismatch
correction, we use

NA=0.5 2
Ircm(r) = Z Koy —Ki™) R(k", K", w = wrem) | (S30)
kﬁ“t,ki”n
with R(kﬁ“t, iHn,w) defined in Eq. (S18b) and with k% and k$2™ defined below Eq. (S6) and Eq. (S7). Note that,
following Supplementary Sect. III B, the R(kﬁ“t, kiHn, w) here has already corrected for the dispersion and aberrations
in the input path of the optical system. We use this version for the 3D nanoparticle colloid sample in Fig. 5 of the
main text in order to compare the SMT and RCM images at the same depths.
Typically, the index mismatch is not corrected in RCM. To synthesize an RCM image without index-mismatch
correction, we use

NA=0.5 ) ) 2
Ircm(r) = Z et o~k )T R’(kﬁ“t,kh“,w = wreM)| s (S31)

K ke

with R/ (kﬁ‘“7 khn, w) being the sample reflection matrix after removing aberrations in the input path by subtracting
A¢mirror(kh“, w) (see Supplementary Sect. III B) but before index-mismatch correction, which has its in-air reference
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plane at 2% = 2500, Here, 1’ = (2,9, 2), and 2’ = 22 — 2% is the apparent depth of the spatial focus looking from
air relative to the reference plane in air. For the 2D USAF target under tissue sample in Fig. 4 of the main text, we

use this version and choose 2" = z{,4; to be the depth that maximizes the image intensity integrated over z-y.

B. OCT/OCM/CASS

For OCT and OCM, the spatial gate has its depth z; fixed on the focal plane and is scanned in z and y. The z
dimension of the image is mapped out through time/coherence gating. They have a limited depth of field because
the strength of the spatial gate and the lateral resolution degrades when |z — z¢| is larger than the Rayleigh range zg.
We synthesize an OCM image with index-mismatch correction through

NA=0.5 2
IOCM ZeleocM(w) 2iwAty Z (kAT —ki™) rfR(kOut’ 1”n7 ) ’ (832)
Kt
with r = (x,y, 2), Aty = ngam(z — 2¢)/c being the additional (or reduced) travel time to propagate from 2 to z in
the sample, and r¢ = (x,y, 2z¢) the location of the spatial gate. We perform the same dispersion compensation as in
SMT (Supplementary Sect. IITE) to determine the spectral phase correction focnm(w). We use this version for the
3D nanoparticle colloid sample in Fig. 5 of the main text in order to compare the SMT and RCM images at the same
depths.
Typically, the index mismatch is not corrected in OCM. To synthesize an OCM image without index-mismatch
correction, we use

NA=0.5 2
IOCM ZeZOOCM(w) 2iwAt; Z ez(kout ko )rfR/(kﬁut, 1Hn’ ) , (333)

Kkout km
I I

with v/ = (z,y,7), 2f = z?“ — ;‘é; the apparent depth of the spatial gate relative to the in-air reference plane of the

reflection matrix R’ (kﬁut klun, w), tp = (2,9, 2f), and At} = [Nglassh®® + ngamz — (A8 + 2217)] /¢ the additional (or
reduced) travel time to propagate to z in the sample relative to propagating to the apparent depth z#* of the spatial
gate in air (see Supplementary Fig. 8). For the 2D USAF target under tissue sample in Fig. 4 of the main text, we
use this version and choose 2" = z{ = 2{,,,.; to be the depth that maximizes the image intensity integrated over z-y.

To synthesize OCT images, we use a smaller NA = 0.1. For k‘H“ near the normal incidence, data points with kﬁ“t near
the normal incidence are excluded from our reflection matrix due to reflection from the objective lens (Supplementary

Sect. I C). Therefore, for the synthesized OCT here, we use k|| and kOUt within a disk with NA = 0.1 centered around
angle oy = aouy = 10°. With index-mismatch correction, we have

) NA=0.1,0t0us NA=0.1,cip, 2
i0 —iwAt 1 sam sam
Tocr(r) = Zez oot (w) —iwAt (co5a—+ sosagns) Z Z PRIC s )I‘fR(kOut k” W) (S34)
w kﬁ"t kiHu
Similar to OCM, we build OCT images without index-mismatch correction with
NA=0.1,0ut NA=0.1,ain 2
1t 41 - (1.air air
IOCT(r/) _ Z ifocT(w)— zwAtf(Comm"rcosaout) Z Z 6z(komfkin ) rfR/(kout kH , ) (835)
w kout k]n

In the “collective accumulation of single-scattering” (CASS) microscopy [22], the time-gated reflection matrix at

one focal plane z = z¢ is measured using a pulsed laser. The time-gated reflection matrix ]:’,(kout, kin; tf) at arrival
time ¢ is related to the frequency-dependent reflection matrix through [87]

E(kﬁ“t, h“,tf Zf Ye “IR( kﬁ“t, h“,w), (S36)
where f(w) is the field spectrum of the incident pulse. Comparing this to the synthetic time-gated reflection matrix

R(kﬁ“t, h“,zj) we defined earlier in Eq. (S24), we see that E(kﬁ“t, hn;tf) ~ R(kﬁ“, iHn;zj = z) if we ignore the

dispersion compensation 6(w) in R(kﬁ“t, ‘”“, z;) and set the reference plane at z; = zr = 0 and t = 0.
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In CASS, matrix elements with the same in-plane momentum difference Ak = k“’lut —k"H“7 denoted as k® in Ref. [22],
are summed over to accumulate the single-scattering contribution. Then, an inverse Fourier transform is performed
to go from the momentum space Ak to the real space r| to produce an image on the focal plane:

E elAkH I‘”

Ak

2

(S37)

ICASS I‘H ZR k” +Ak|‘ k” ,tf)

kj

By treating E(kﬁm, 1Hn,tf) ~ R(kﬁ“t, h“;zj = z¢), inserting the definition of R(kout kIHr‘7 zj) from Eq. (S24), and

comparing to Eq. (532), we can see that the CASS image equals the OCM image on the focal plane,

Icass(r)) = loom(ry, 2t). (S38)

In the frequency-domain OCM images we synthesize, we have removed the dispersion and aberrations in the input path
of the optical system by subtracting Agf)mirmr(kh“, w) (see Supplementary Sect. III B) and additionally compensated
for the sample dispersion (Supplementary Sect. IIIE). A CASS image does not come with these corrections, so it
would have a lower quality than the OCM image we synthesize.

C. CAO-OCM

The interferometric measurement of OCT and OCM provides phase information that can be used for digital aber-
ration correction [18-21, 88, 89]. However, the correction only applies to the phase image itself; it cannot apply
separately to the input spatial gate and the output spatial gate since OCT/OCM does not measure the reflection
matrix. In this section, we consider computational adaptive optics (CAO) corrections onto the confocal OCM im-
age, referred to as CAO-OCM [19-21, 88]. CAO for full-field OCT without input spatial gate [18, 89] has a lower
performance due to the lack of confocal gating, which we consider later as a limiting case of SMT in Supplementary
Sect. VB.

We start by synthesizing the phase image of OCM with index-mismatch correction and dispersion compensation,
from Eq. (S32), at the focal plane z = z,

Yoem(r);2r) = Zewocmw Y T R K w). (S39)

K ke

In CAO-OCM, the aberrations are corrected in the reciprocal space of the en face image [19-21, 88], q = kﬁ“t k““
So, we consider the 2D Fourier transform of the phase image,

1Z)OCM (qH; Zf) = Z et YoM (I‘H; Zf). (840)

r)
After applying phase correction e*?(41), the image is inverse Fourier transformed back to the real space
Yono(r); 2t) = Z eiq”'r|\+i¢(QH)«lLOCM(qH %) (S41)
qa
to form the corrected image Icao(r|; zr) = [Ycao(ry; z) [

To determine the phase correction ¢(qy), we follow the same strategy as in Supplementary Sect. III F, expanding
it in Zernike polynomials like in Eq. (S27),

q
ot = Y enZ ity ) 52)

with k§** = wpax/c. The Zernike coefficients {c, } are then determined by maximizing the same image quality metric
M =", Icao(r)In[Icao(r)/Io] using the same L-BFGS algorithm with initial guess ¢, = 0. Here, the gradient of
M with respect to {c,} is

Icao(ry;2e)] . i say -y +id q
@ - ,z.; Im{[l o In == Yo (x); 2t )ocm (ays ) M) ¢ Z, sgona) OB
ST
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Supplementary Fig. 17. Validation of OCM corrected with computational adaptive optics (CAO-OCM). The
sample is a USAF target in air, not covered by any scattering medium. Scale bar: 10 pm.
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Supplementary Fig. 18. CAO-OCM images of USAF target under 1-mm of mouse brain tissue. The same
progressive optimization as in SMT is applied. The bottom row shows the corresponding phase correction maps in the reciprocal
space q. Only some low-order variations get corrected despite allowing up to 275 Zernike polynomials per zone because the

out

high-order wavefront distortions can only be corrected separately through ¢in( lH") and Gout (kH ). Scale bar: 10 pm.

We adopt the same progressive bisection strategy as described in Supplementary Sect. IIIF, gradually dividing the
FOV into smaller zones while increasing the number of Zernike polynomials per zone and truncating ¥¢ Ao(rH;zf) to
within the target zone.

To validate our implementation of CAO-OCM, we first test it on a bare USAF target not covered by any scattering
medium. Before the CAO-OCM optimization, the aberrations in the input path of the optical system are already
removed by subtracting A¢mirror(kh’“, w) (Supplementary Sect. IIIB), but there are still aberrations in the output path,
which is visible when we image group 9 of the USAF target with a reduced NA of 0.25. As shown in Supplementary
Figs. 17, CAO-OCM successfully removes these low-order aberrations and improves the image quality. Progressive
bisection is not necessary since the isoplanatic patch size of these low-order aberrations is very large.

Next, we test CAO-OCM for the USAF-target-under-tissue sample considered in the main text. Supplementary
Fig. 18 shows the CAO-OCM images and the corresponding phase correction maps during the progressive optimiza-
tion. The final image here is also shown in Fig. 5f of the main text. Here we use the same focal depth 2z = 977.5 um,
the same number of Zernike polynomials, and the same momentum spacing d¢ as in Supplementary Figs. 11.
Despite applying all of these strategies and allowing up to 275 Zernike polynomials per zone, the optimization only
identified some low-order aberrations, with no significant improvement to the image. This is because (1) prior to this
optimization, the low-order aberrations in the input path of the optical system have already been removed through a
calibration mirror (Supplementary Sect. III B), and (2) double-path wavefront correction is crucial for the high-order
terms [21] but is not possible with CAO-OCM.
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D. Volumetric reflection-matrix microscopy (VRM) and CLASS

Here we detail our implementation of the VRM method [35], present analyses that reveal the quantities that VRM
implicitly maximizes, and compare the VRM method to the SMT method. The wavefront correction part of VRM
is identical to the “closed-loop accumulation of single-scattering” (CLASS) [26, 28], which is also mathematically
equivalent to the “distortion matrix” approach with iterative phase reversal [32-34].

1.  VRM spectral dispersion compensation

The very first step of VRM is to “minimize defocus error” through “a numerical propagation to the depth with the
maximum reflectance (zmax)” [35]:

R (K" K, w) = R(K K w)e! (778 mme, (S44)

Doing so places the reference plane of the reflection matrix at zpax. This step is only mentioned on page 5 of the
Supplementary Materials of Ref. [35], but it is important because our analysis below shows that the VRM dispersion
compensation implicitly maximizes the image brightness at this particular depth zpax. To find the “maximum
reflectance,” we build the volumetric SMT image without corrections using Eq. (1) of the main text, and choose zyax
to be the depth where the z-y-integrated image intensity is the largest. We start with inclusion of the index-mismatch
correction, so the R(kﬁut kIHr‘, w) in Eq. (S44) is the corrected one defined in Eq. (S18b), the k" and k" in Eq. (S44)
are abbreviations of k3% and k3701, and the kou and ki, below are abbreviations of k&' and k™.

VRM then uses an iterative phase conjugation scheme to estimate the spectro-angular dispersion ¢, (k i“n,w) and
out O‘“,M relative to the center frequency w.. At the n-th iteration, a compensation of —A (n) k", w) and
y in K|

A(Z)oﬁ%(kout, ) is applied onto the columns and rows of the reflection matrix,

R(n+1)(kﬁut kll’ w) = —iA¢éﬁg(kﬁ"t7w)R(n)(k0ut }?,w)e‘iA¢§:)(kilf”“), (S45)

with n = 0,1,2,... and with initial condition

0 out in _ out in
R( )(kH ) H7 )—Rmax( I ||7 )7

(S46)
Agl (I, w) = Ag (G, w) = 0.
The compensation at the n-th iteration is determined by phase conjugation,
Ag (ki w) = arg | > R (kU KiP, w) ROV* (v, i“,wc)], (S47)
kUt
Agin (k™ w) = arg | R™ (U kiR, w) R (ke in,wc)]. (S48)
kll’l

Here, we iterate to the Ny.-th iteration, until \A(bi(:)(k‘||“7 )| and |A¢(n) (ko‘Jt w)| are both smaller than 10° for every

out

pair of (kh“, w) and every pair of (k‘ﬁ“t, w). The reflection matrix after the VRM dispersion compensation (dc) is then
Rae (K K, w) = RONVact (ki it ) = e~ @o K@) R (1000, K, )™ 0n (i), (549)

where gbin(kh“, w) = S Nae AQS(")(le“, w) and ot (K™, w) = S Nae gbout(kout7 ). Note we can see from Eq. (S47)—
(S48) that qﬁm(khn, we) = Pout (K i ut W) = 0 at the center frequency throughout the iterations.

These VRM dispersion compensation steps are very different from the SMT dispersion compensation steps described
in Supplementary Sect. III E. To facilitate comparison and to gain insights into VRM, here we identify the objective

functions that the VRM dispersion compensation implicitly maximizes. Define

MY™M KM w) = Y Tu(r kP w), Myf™MK™,w) = > Tou(r, k™, w), (S50)

r<Zmax r€Zmax
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where denotes r = (2, ¥y, Zmax) Wwith summations over z and y in the FOV while fixing the depth at zmax.

r€Zmax
Here,
2
Lin(r, kl )= Z z:ez(km,t —Kin) T —ious (K71, w)—i¢in(k‘”’“7w)R(k0ut7kin7w) , (S51)
w=w’,we k(ﬁ“t
2
(e k" @) = | 30 3 et ) rmifon () =i0m 0602 Rl ki, w) (552)
w=w’ ,we km

By substituting Eq. (S44) into Egs. (S50)—(S51), using Parseval’s theorem, and taking the derivative, we see that

aMVRM
Drm (K] 0)

o Im

> Rac(ki™ ki, w) Ry (k™ i“,wc)]- (S53)
kout

When the VRM dispersion compensation converges, A(bi(év )(k‘”“, ) ~ 0, so the term inside the square brackets

of Eq. (S47) is purely real, and ~ 0. We can similarly show that ~ 0 when VRM converges.

RM
Therefore, we conclude that the 1terat1ve phase conjugation of VRM dispersion compensation reaches a local maximum
of M, VRM(khn w) and M(}{EM(kﬁ“t, w) in Eq. (S50) for all kh“, kﬁ“t w. Note this analysis is new and was not carried
out in Ref. [35].
This analysis allows direct comparison between the VRM dispersion compensation above and the SMT dispersion
compensation of Supplementary Sect. III E. We see four major differences:

1. The SMT image (Ism, defined in Eq. (2) of the main text) used in the SMT objective function of Eq. (520)
employs both input spatial gating (through a summation over k;,,) and output spatial gating (through a summa-
tion over kot ). The confocal spatial gate is crucial for the optimization, as shown in Supplementary Fig. 10.
Meanwhile, the I;,, and I, of Egs. (S51)—(S52) used in the VRM dispersion compensation drops one of the two
spatial gates, which reduces its ability to suppress multiple scattering and other undesired signals.

2. The SMT image IsyT used in the SMT dispersion compensation also employees temporal gating through a sum-
mation over all frequencies w. The temporal gate is crucial for the optimization, as shown in Supplementary
Fig. 10. The VRM frequency summation in Egs. (S51)—(S52) only sums over two frequencies, w’ and we, so
the temporal gate is gone, which further reduces its ability to suppress multiple scattering and other undesired
signals.

3. The spatial summation of SMT dispersion compensation in Eq. (520) sums over a 3D volume, which avoids
overfitting. The spatial summation of VRM dispersion compensation in Eq. (S50) sums over a 2D slice at a
single depth zpax, which can create serious artifacts. This is the reason that the volumetric VRM image in
Fig. 5 of the main text shows bright slices, with each slice being the zy,,x of that sub-volume.

4. To avoid overfitting and to alleviate the curse of dimensionality in an optimization problem, SMT employs only
three variables for dispersion compensation: a1, @z, as, each having a physical meaning (group velocity, group
velocity dispersion, and asymmetric pulse distortion). Meanwhile, VRM uses (j)in(kh“,w) and ¢out (kﬁ“t,w) as

free variables for every pair of (kh“, w) and every pair of (kﬁ“t, w).

Also, with the SMT dispersion compensation, we pre-compute the angular summations over ki, and ko, in Eq. (S19),
which makes the SMT dispersion compensation much faster than the VRM dispersion compensation. For the nanopar-
ticle colloid sample here, the SMT dispersion compensation took less than 10 minutes for the full volume (across the
110 pm depth of field), while the VRM dispersion compensation took around 2 hours per sub-volume (32 hours in
total for the full volume).

In our tests, we find the VRM dispersion compensation to work reasonably well with high-contrast planar targets
in a weakly scattering system, such as a USAF target in air or under a thin layer of tissue. However, for the strongly
scattering systems we consider in the main text, the VRM dispersion compensation introduces very bright artifacts
on the edges of the image (Supplementary Fig. 19b). We observe the same behavior with VRM when using a
reflection matrix measured without any sample. This is because instead of maximizing the signal from the intended
targets, VRM maximizes the signal from the objective lens reflection. Recall that after triple gating and after we
exclude the peak of the objective lens signal from the reflection matrix data (Supplementary Sect. IC), the sensitivity
of Isymr(r) is still limited by the residual reflection from the objective lens (Supplementary Sect. IIC). Since the
objective lens lies at depths very far away from the sample (but still within the coherence length of the laser), the
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Supplementary Fig. 19. Evolution of the VRM image of the USAF target under tissue without and with
temporal truncation. Scale bar: 10 pm.

most effective way to filter out the objective lens reflection is time gating. But the Iy, (r, kiHn,w’) and Iy (r, kﬁ“t,w’)

that the VRM dispersion compensation maximizes only use two frequencies (w’ and w.) with no time gating, so the
in

objective lens signal dominates over the weak target signal in Ij,(r, kH yw') and Iy (r, kﬁ“t, w’) and is maximized by

VRM. This may not be as much of an issue in Ref. [35], which used lasers with much shorter coherence lengths and
considered samples dominated by the aberrations (namely, single scattering) of a thin plastic layer rather than the
multiple scattering from a volumetric medium. To improve the VRM performance, here we suppress the objective lens
signal by incorporating a coarse temporal gate prior to the VRM dispersion compensation. We do so by (1) shifting
the reference plane of the reflection matrix to the center of a truncation volume [same as Eq. (S44) but to the center
of the truncation volume instead], (2) perform a non-uniform discrete Fourier transform to convert the reflection
matrix data from frequency domain w to time domain ¢, (3) perform another non-uniform discrete Fourier transform
to convert from time domain ¢ back to frequency domain w, and (4) shift the reference plane of the reflection matrix
back. In time domain, we only use the values of ¢t within the truncation volume, which sets the coarse temporal gate.
As shown in Supplementary Fig. 19d, this “temporal truncation” suppresses the objective-lens contributions in
the reflection matrix data and prevents the VRM dispersion compensation from maximizing the objective lens signal.
However, the performance of VRM is still substantially worse than SMT due to the four differences described above.

For the 3D nanoparticle colloid sample, we perform the first SMT dispersion compensation simultaneously over the
full 110 pm depth of field, z € [1470, 1580] pm, to avoid overfitting. However, simultaneous dispersion compensation
over such a large volume is not possible with VRM: when the temporal truncation spans such a large volume, there
is not enough suppression of the objective lens signal (since the VRM dispersion compensation itself has no temporal
gate), and the VRM dispersion compensation always maximizes the objective lens signal instead. So, here we divide
the 110 pm depth of field into 16 overlapping sub-volumes (same as in the SMT wavefront correction) and perform
VRM separately for each sub-volume (both dispersion compensation and wavefront correction), each with its temporal
truncation. The final images of the sub-volumes are then stitched together, same as in SMT.

2. VRM angular wavefront correction and reconstruction

After estimating the spectro-angular dispersion relative to the center frequency w., VRM performs another iterative
phase conjugation to estimate the angular wavefront distortion gbm(khn,wc) and gbout(kﬁ“t,wc) at w,, and then adds
the same wavefront correction of —(bin(kiH“, wc) and —qbout(kﬁ“t, wc) to all frequencies.

This wavefront correction procedure is identical to CLASS [26, 28] except that VRM builds the coherence-gated
matrices from frequency domain while generalizing CLASS to include multiple depth slices (referred to as “volumetric
dispersion correction” in Ref. [35]). It starts with selecting J depth slices {z1, ..., z;} and building the coherence-gated
(cg) reflection matrices at these depths,

Reg (k0™ K 27) = > Rao(k™, ki, w)el k2" =R (=2 (S54)
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with the dispersion-compensated reflection matrix Rdc(kﬁUt, kiH“7 w) from Eq. (S49). Another iterative phase conjuga-
tion follows, as

R(n+1)(k°“t, kﬁl) _ *ZA@()R(kO"t)R(”) (kout in)efiA(pi(:)(kiH“ , (855)

cg,j Il il

z), A (ki?) = Ag ©) (k") = 0. The

out

with n =0,1,2,... and with initial condition R((:?] (k" ki) = R, g (k" ki 2

correction at the n—th iteration is determined by phase conjugation,

Al (k) Zafg[ > R (e + Ak, KRN (Ak)) |, (S56)
JAk
Aaéoﬁi(k“t)—arglz RGP (9 K — Ak)) chJ<Ak.>] (S57)
JAk
where
(”) n in
R (M) =3 RU (ki + Ak, ki) (S58)

km

is the confocal and coherence-gated (ccg) reflection matrix at depth z;. Here, we iterate to the Ny-th iteration, until
|A¢(n)(k‘“)\ and |A¢, (n) (kj"*)| are both smaller than 10° for every k” and every k"

out
Ref. [35] only reported images at these individual slices {z;}, obtained by taking the inverse Fourier transform of
the final confocal and coherence-gated reflection matrices similar to Eq. (S37),

2

Ivrm(ry, z) = | e ARmi R (A ) (S59)
In order to examine how VRM works for volumetric reconstruction, here we generalize Eq. (S59) to
2
Iyru(r) = Z ei(koutfkin)'rRVRM( Hu kH W)l (S60)
kout k]n
I
with the wavefront-corrected (wc) reflection matrix
RVRM(kHu ’ 1‘?7 w) = efmout(kﬁ“‘)—m;n(k'”“)—i(k‘;"tfk;“)zmadec(kﬁut’ l\ln’ w), (S61)
where ¢1n(k‘n) S A¢>(")(km) and gout (kf**) = S Out(kﬁ“t), with Rac (k" kﬁl, w) from Eq. (S49). Note
that Eq. (860) was not derived and not used in Ref. [3 ], but it mathematically reduces to Eq. (S59) when z = z;,

so we use it to extend the formalism of Ref. [35] from individual slices to volumetric reconstruction. This Iyvrm(r) in
Eq. (S60) is the VRM image we build.

To facilitate comparison with SMT, here we carry out an analysis similar to that in the dispersion compensation
section above. The objective function that the VRM wavefront correction implicitly maximizes is

M™M= Z Ivrm(r), (S62)
re{z;}
where ) () denotes r = (z,y, z) with summations over z and y in the FOV and summations over z at the chosen
J depth slices {z1,...,2z7}. We can show that
aMVRM B ) '
O (KT) | D Reg (k' + Ak K Ry 5 (Aky) | (S63)
in j,Ak”

When the VRM wavefront correction converges, Agb.(N) (kin) ~ 0, so the term inside the square brackets of Eq. (S56)

VRM BM

is purely real, and %L(I() ~ 0. We can similarly show that m ~ 0 when the VRM wavefront correction

31



converges. Therefore, we conclude that the iterative phase conjugation of VRM wavefront correction (and similarly
of CLASS) reaches a local maximum of MYEM in Eq. (S62).

This analysis allows direct comparison between the VRM wavefront correction above and the SMT wavefront
correction of Supplementary Sect. IIIF. We see four major differences:

in

1. To avoid overfitting, SMT regularize the problem by expanding ¢y ( I ) and @out (kﬁ“t) in Zernike polynomials
and only using the Zernike coefficients as the free variables. In CLASS and VRM, every qbin(kh“) and every
Dout (kﬁ“) is a free variable.

2. To avoid getting trapped in a poor local optimum, SMT first optimizes ¢, /ou Over the full volume and then
progressively optimizes over smaller zones while using the previous ¢, /ou; as the initial guess. There is no such
progression in CLASS and VRM. As shown in Fig. 2c—f of the main text, optimizing the wavefront inside smaller
zones without regularization and progression can result in an image that is brighter but with worse quality.

3. SMT also increases the number of Zernike terms when progressing to smaller zones to account for the relation
between isoplanatic patch size and the smoothness of wavefront variation. This is not possible in CLASS and
VRM.

4. SMT starts from an initial guess of no wavefront correction, ¢i,(ki") = ¢out (kO™) = 0. VRM starts with the
I Il
¢in(khn,w) and qbout(kﬁ“t, w) from its dispersion compensation step.

While the VRM wavefront correction uses multiple slices, it cannot reverse the over-optimization of the intensity
at the single slice zyax during the VRM dispersion compensation because the wavefront correction does not modify
the temporal gate.

The formalism above starts from the reflection matrix R(kﬁ“t, i”“7w) of Eq. (S18b), which has corrected for the
refractive index mismatch at interfaces. This is what we use for the 3D nanoparticle colloid sample in Fig. 5 of the
main text in order to compare the SMT and VRM images at the same depths.

The VRM formalism from Ref. [35] does not include index-mismatch correction, so we do not include such correction
for the 2D USAF target under tissue sample in Fig. 4 of the main text, for which quantitative values of z is not
necessary. In this case, we build the VRM image with

2
Iyra () = | 3 e 2 A B (kK w)| (364)

ket Jejfw
with v/ = (z,y,2'), ' = z4r — 231 the apparent depth of the spatial gate relative to the in-air reference plane 240 and
with R’VRM(kﬁ“t,kh“,w) built from the reflection matrix R’ (kﬁ“t,kh“,w) without index-mismatch correction. Here,

Al = [Nglassh®® + Ngamz — (h818SS + 2211 /¢ is the additional travel time to propagate to z in the sample relative to
propagating to the apparent depth z*" in air, which aligns the temporal gate with the spatial gate in the presence of
index mismatch (also considered in Supplementary Sect. 6 of Ref. [61]). For this 2D target, we build the VRM image
at 2’ = Z{ager, the depth that maximizes the image intensity integrated over z-y.

In terms of computational cost, although VRM or CLASS implements phase conjugation rather than gradient-based
optimization, its wavefront correction for the whole FOV still takes ~1 minute to complete due to the large data size.
Note that VRM and SMT share similar computational overhead in the reconstruction of the time-gated reflection
matrices and the precomputations. Thus, when performing wavefront correction for only the whole FOV instead of
each zone, SMT’s computational time and memory consumption in wavefront correction is comparable to VRM’s. As
SMT goes through multiple progressions to correct each zone, enabling superior correction of strong distortions, it
ultimately takes more time and memory.

3. VRM/CLASS and the optical reciprocity principle

Having examined the implementation details of VRM/CLASS, it is instructive to understand these methods from
the perspective of optical reciprocity. The optical reciprocity principle, also known as the Lorentz reciprocity or the
Helmbholtz reciprocity, states that if a source at point A creates a field at point B, then the same source at B will
create an identical field at A. In imaging applications, this principle is often implemented through phase conjugation,
where a time-reversed wave can exactly retrace its path through the optical system, effectively canceling wavefront
distortions. This principle underlies various wavefront correction methods, including guide-star-based adaptive optics
and guide-star-based wavefront shaping where conjugating the wavefront coming out from the guide-star, such as a
fluorescence bead, forms a tight focus at the guide-star location, enhancing the image quality in that region.
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We can understand how VRM/CLASS implements this principle by examining its matrix operations. In VRM/CLASS,
the scattered wavefront carries phase distortions —@out (Kout). Multiplying ei®out(kout) o the corresponding matrix
rows to correct aberrations is computationally equivalent to forming a phase-conjugated wavefront at the output
pupil plane. Transposing the matrix interchanges inputs and outputs, meaning that the phase-conjugated wavefront
becomes the incident wavefront and is sent back to the sample to form focused/’ spots. After the transpose, the
inputs become outputs and vice versa, with —¢;, (kin) becoming the scattered wavefront. Multiplying eitin(kin) to
the corresponding rows of the transposed matrix (columns of the non-transposed matrix) to correct aberrations
computationally forms a conjugate wavefront at the output pupil plane (previously the input pupil plane before
the transpose). Another second transpose sends this conjugate wavefront back to the sample to focus inside it and
improve the image. This process carries on until the image can no longer be improved. Through these iterative opera-
tions, VRM/CLASS employs the optical reciprocity principle to iteratively improve image quality by computationally
implementing wavefront conjugation and propagation.

E. Eigenchannel-based approach

The eigenchannel-based approach has emerged as powerful tools to suppress multiple scattering, leading to weaker
speckles on the image [23, 55, 56]. This method employs singular value decomposition (SVD) to decompose the
scattering matrix into the product of three matrices UXVT, where U and V are two unitary matrices whose each
row contains the output and input eigenchannels, 3 is a diagonal matrix where each diagonal element (singular
value) represents the weight of the corresponding input and output eigenchannels. When the scattered signal is not
overwhelmingly distorted by strong aberrations and scattering, the large singular values correspond to single scattering
eigenchannels while smaller ones correspond to multiple scattering eigenchannels. To suppress the multiple scattering,
singular values smaller than a certain threshold are set to zeros. The image will then be found from the diagonal of
the new matrix with suppressed multiple scattering. Here, we apply this approach to the time-gated reflection matrix
in the spatial basis R(rﬁut, rh“, Ztarget). We set singular values smaller than 50% of the maximum to zero, with this
threshold selected to yield the best image visually.

However, there is not a strict definition to this threshold. Rather, it varies from case to case. Therefore, there is
a chance that after thresholding, not only the multiple scattering is suppressed but also some of the weaker single
scattering eigenchannels. In addition, as the eigenchannels approach only suppresses multiple scattering, it does not
correct for aberrations. Therefore, after being processed with the eigenchannels approach, the image may have weaker
multiple scattering speckles but it will still be distorted due to the uncorrected aberrations.

Supplementary Fig. 20 shows a comparison between SMT and the eigenchannels approach. In Supplementary
Fig. 20(b), inside the yellow dashed region, we notice the image becomes better as the three horizontal bars become
more well-separated after suppressing the multiple scattering eigenchannels, although the still worse than the SMT-
with-wavefront-correction (Supplementary Fig. 20(c)). However, in many other parts of the image, notably the
region marked by the white dashed box, eigenchannels approach fails to produce any visible improvement due to the
lack of an effective wavefront correction. Supplementary Fig. 20(e) shows a quantitative comparison between SMT
and the eigenchannels approach. The target along the white solid line in Supplementary Fig. 20(a-c) contains
three vertical lines with a 3-pm separation, which are only separated in the SMT image after wavefront correction. In
the 1D profile along this line, only the SMT with correction shows three discernible high peaks. On the other hand,
the eigenchannels approach reveals only one broad peak and another narrower one. This result confirms a better
performance of SMT over the eigenchannels approach. It is safe to say SMT can image deeper due to the powerful
aberration corrections, as SMT reveals all targets while the eigenchannels approach can only reveal some of them with
worse quality. SMT also achieves better resolution as the eigenchannels cannot separate the two vertical bars along
the white solid line, meaning that its resolution is worse than 3 pm. Meanwhile, SMT clearly separates all bars and
as the smallest elements of the target have a 1.1 pm separation. The resolution of SMT is thus equivalent to or better
than 1.1 pm. Eigenchannels approach, nevertheless, still beats SMT in terms of computational complexity, as only
one SVD is involved, which took less than 1 second to complete in our case, compared to several minutes in SMT.

V. SMT WITH REDUCED GATING

As shown in Supplementary Fig. 10, triple gating is important for the SMT optimization. But reducing the gating
strength does have the benefit of requiring less matrix data to be measured, which can speed up the measurement
time. In this section, we explore to what extent the gating can be reduced.
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Supplementary Fig. 20. (a) SMT without wavefront correction. (b) Image with eigenchannels approach. (c¢) SMT with
wavefront correction. In (a-c), the yellow dashed box marks the region where eigenchannels approach improves the image while
the white dashed box marks one of many regions where it fails to produce visible improvement. (d) The normalized singular
values of the time-gated reflection matrix. The vertical line separates the single and multiple scattering. The red-colored
singular values on the left of the line correspond to single scattering eigenchannels and are kept. The blue-colored singular

values on the right of the line are all set to zeros. (e) A comparison between the normalized image intensity of the three images
in (a~c) along the white solid line. Each 1D profile is normalized by its own maximum value. Scale bar: 10 pm.

A. SMT with fewer frequencies

We start with time gating. Supplementary Fig. 21 shows the SMT images of the USAF-target-under-tissue
sample when we keep all 247 frequencies (top row), when we reduce the temporal gate by using only 18 frequencies
while keeping the 741-899 nm wavelength range (middle row), and when we completely remove the temporal gate by
only using the central frequency (bottom row). SMT still works quite well even when the number of frequencies is
reduced by over an order of magnitude. But it fails when the temporal gate is completely removed.

B. SMT with fewer incident angles

Next, we consider spatial gating. Supplementary Fig. 22 shows the SMT images of the USAF-target-under-tissue
sample when we keep all 3761 incident angles (top row), when we reduce the input spatial gate by reducing the input
NA from NA;, = 0.5 to NA;, = 0.15, corresponding to 341 incident angles at the highest frequency (middle row),
and when we completely remove the input spatial gate by only using one incident angle at normal incidence (bottom
row), corresponding to NA;, = 0. The last case, Supplementary Fig. 22g—i, is also shown as Fig. 5a—c in the main
text. When the input spatial gate is fully removed, the image reconstruction fails even after the optimizations.

Full-field OCT corrected by computational adaptive optics (CAO-FF-OCT) [18, 89] also has no input spatial gate;
their output spatial gate is also weaker due to the lower NA used. Previously, CAO-FF-OCT was applied to correct for
the aberrations from a plastic layer and thin film of milk [89] and from the retina [18]. The results in Supplementary
Fig. 22¢—i indicate that CAO-FF-OCT would not work in a strongly scattering medium even after increasing the NA
and after adopting more advanced optimization strategies because it does not have a confocal spatial gate.
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Supplementary Fig. 21. SMT images of the USAF-target-under-tissue s

ample using all 247 frequencies measured (top row),

using 18 frequencies across the full bandwidth (middle row), and using only 1 frequency (bottom row). Scale bar: 10 pm.

VI.

POINT SPREAD FUNCTION (PSF)

To evaluate the point spread function (PSF) of the USAF-target-under-tissue sample, we fix the input at rj, while
varying the position of the output r. Specifically, for SMT, we generalize Eq. (2) of the main text to get

NA=0.5

> ¢
out in
ke ke

k:):\? r— kvlm

PSFgyr(r

- [

I‘1n+¢7out (kout ) +¢i“ (kl”n )] R(kOUt

2

w)|

in
) Ha

(S65)

with r = (2, ¥, Ztarget) a0d Tin = (Tin, Yin, Ztarget). For the other methods, we generalize Egs. (S31), (S33), (S35), (S64)

to get
NA=0.5 2
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with r’ = (l’, Y, Ztarget) and r, = ($1n7 Yin, Ztarget)'
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Supplementary Fig. 22. SMT images using NA;j, = 0.5 corresponding to 3761 incident angles (top row), using NA;, = 0.15
corresponding to 750 incident angles (middle row), and using NA;, = 0 corresponding to only 1 incident angle (bottom row).
Scale bar: 10 pm.

VII. SAMPLE PREPARATION

For imaging through tissue, we excised a slice from a fresh CD-1 adult mouse brain that is rinsed of blood
(BioChemed Mouse tissue Brain) and placed the tissue slice on top of a USAF target (PhotomaskPORTAL Res-
olution target RTUSAF519P), immersed in a phosphate buffer solution. The specimen was sealed by a surrounding
spacer and a coverslip on top (Supplementary Fig. 23a).

a b —
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Supplementary Fig. 23. Sample preparation. a, A schematic of the sample with a USAF target beneath mouse brain
tissue. The tissue slice is immersed in phosphate buffer solution and sealed by a spacer and a coverslip. b, Preparation of the
TiO2 nanoparticle colloid sample.

The nanoparticle colloid sample consists of a mixture of polydimethylsiloxane (PDMS) silicone (MicroLubrol SYL-
CAP 284-S) and titanium dioxide (TiOz) nanoparticles with a mean size of 500-nm diameter. We first dilute the
TiO2 solution (Sigma-Aldrich Titania nanoparticles 914320) with ethanol and mix it with the PDMS base material.
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The mixture is stirred and heated at 150 °C on a stirring hot plate until it is fully mixed and water and ethanol
have evaporated. Then, we add the curing agent of PDMS into the mixture and stir at room temperature. After a
thorough mix, the solution is placed into a vacuum chamber for degassing. We make a container by placing tapes
(thickness of 2-3 mm) on a coverslip and then pour the degassed solution into the container. The sample is sealed by
another coverslip on top and cured for 2 days at room temperature (Supplementary Fig. 23b).

The TiOs mass concentration of the sample is 1.8 ppm which gives a volume particle number density of n, =
6.35 x 1073 pm™3 with the material density of prio, = 4.23 g/cm® [90] and pppms = 0.965 g/cm?® [91]. Mie
theory [92] yields a scattering cross section of o = 0.839 1m? and anisotropy factor of g = 0.599 for 500-nm particle
diameter and wavelength A = 840 nm, with the particle and the background refractive indices being 2.51 [93] and
1.41 [84]. The volume fraction of TiOs is 0.04%, sufficiently low that spatial correlation effects [94] are expected
to be negligible, so we use the independent-particle approximation [95] to obtain the scattering mean free path as
lsca = 1/(nyo) = 0.19 mm and the transport mean free path as ¢y, = 1/[n,0(1 — g)] = 0.47 mm.

VIII. RESOLUTION AND DEPTH OF FIELD OF SMT

In this section, we consider the resolution and depth of field (DOF) for the nanoparticle colloid sample, with
theoretical estimates and a statistical analysis on the experimental data.
The simplest form of SMT is gy (r) = Zko.,t K w ei(k"“t_k‘“)'rS(koumkin,w)~ Here, we can see that the spatial

dependence comes from ei(kwt*k‘")'r, so the spread of Koyut — ki, in the summation determines the spatial resolution.
When the FOV of illumination and detection is infinite, the spread of ko — ki, will be the same everywhere, giving
SMT a location-independent resolution and an infinite DOF. In practice, the FOV is finite, so the large-angle beams
will cease to illuminate the FOV of interest and/or cease to be detected at depths z sufficiently far from the reference
plane under which the reflection matrix was measured. This reduces the lateral resolution and the signal strength
away from the reflection-matrix reference plane, giving SMT a finite (but still large) DOF. Roughly speaking, the
SMT DOF covers the volume of overlap among the input/output beams in the scattering matrix data.

in

A. Theoretical axial resolution

The frequency summation and the angular summations both contribute to the axial spread of ko, — K. In other
words, the temporal gate and the spatial gate both set the axial resolution, with the tighter gate being the main factor.
The maximal axial spread of kot — ki, comes from small incident angles, so it is roughly depth independent. For the
nanoparticle colloid sample, the expected diffraction-limited axial resolution from the spatial gate is approximately
22Rr = 2nsam)\0/(7rNA2) ~ 2.99 um, with center wavelength A\g = 840 nm and ng.n, = 1.4 for PDMS. Meanwhile, the

2
expected bandwidth-limited FWHM axial resolution from the temporal gate is §z = fyn?i—ni% = 1.42 pm, where
AN = 187 nm is the bandwidth and v = 1.19 for a flat-top spectrum [96]. The latter is tighter and determines the
axial resolution here. Dispersion, aberration, and scattering degrade the resolution, but the dispersion compensation

and wavefront correction of SMT can restore the resolution to near the ideal value.

B. Theoretical lateral resolution and depth of field

For the lateral resolution and the DOF, we analyze the range of accessible angles at point r in the sample, using
geometric optics. The range of accessible angles sets the lateral resolution through the lateral spread of kot — kip,
and it also provides the signal strength at r. In our setup (Supplementary Sect. IA), the camera sensor plane is
conjugate to the focal plane of the objective lens, so the reference planes for the illumination and detection are
both at 2% in air. The area that the camera sensor images at z%% is labeled by the gray square as “FOV in air”
in Supplementary Fig. 24a-b. Given a point r = (r||, 2) in the sample and a transverse momentum k|, we can
backpropagate the associated ray to air (while accounting for refraction at the interfaces) and then forward propagate
the ray (without refraction) to find its would-be intersection point with the reference plane in air if the sample is

alir

not there, r¥t = (227 2 221) (Supplementary Fig. 24a). If rﬁir = (2%, 92 is within the FOV in air (the

ref
gray square), such transverse momentum k; is accessible at point r in the sample. If rﬂir is outside the gray square,
then this k| is not accessible, meaning such ray cannot be detected by the camera. Supplementary Fig. 24a-b
schematically illustrate examples of an accessible k (in red) and an inaccessible k| (in blue).
Specifically, here we have the sample refractive index ns = ngam = 1.4 (PDMS), a coverslip with thickness h; =

he'ass = 154 pm and refractive index n; = Nglass = 1.5, and a reference plane of zfg = 996 pm. Using Snell’s law and
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Supplementary Fig. 24. Theoretical lateral resolution, signal strength, and depth of field for the nanoparticle
colloid sample. a, For each point r in the sample and each transverse momentum k|, we can determine its would-be position
rt at the reference plane zF in air, which is the plane imaged by the camera. b, When r2% falls within the FOV in air, the
k; is accessible (red). When rf} falls outside the FOV in air, the k| is not accessible (blue). ¢, Example of accessible and
inaccessible k| points, at r = (10,10,1485) pm. d, Effective NA defined by the range of accessible angles, which determines
the ideal (diffraction-limited) lateral resolution. e, Ratio of accessible k| points, which determines the overall signal strength

in SMT.

geometry, we obtain

. . k
AI’H = I'ﬁlr — I'” = [(Zfé; + h1) tan 90 — h1 tan 91 — ztan 92] ﬁ, sin 00 =nN1 sin 01 = N2 sin 92 = |kH | /ko, (870)

where 6y, 01 and 6 are the propagation angles relative to the z axis in different media, and kg = 27/ is the
vacuum wave number. Note that the in-plane momentum k| = (k;,k,) is the same in all media. For each point r
in the 3D space of the sample, we loop through the list of in-plane momentum kj within the NA of the objective
lens and use Eq. (S70) to determine if each k| is accessible or not. We denote the accessible ones as kﬂcceSSible =

(Kaccessible kzcceSSible). Supplementary Fig. 24c provides an example.

The ideal (diffraction-limited) lateral resolution is determined primarily by the maximal spread of kﬁ“t — kIHn Since

we use the same NA for the input and the output, this is determined by the maximal spread of k. So, we define an
effective NA as

accessible accessible

) — min(
2k

max(

NAST = (S71)

and similarly for NAZH. Supplementary Fig. 24d plots NA® along a diagonal (z = y) slice of the 3D sample.
Within the total volume we consider in Fig. 4 of the main text (from z = 1470 pm to z = 1580 pm, indicated by
dashed lines), NAST remains close to the ideal value of NA** = 0.5. If one defines the DOF as where the lateral
resolution increases by a factor of v/2 (which is the typical definition in RCM and OCM/OCT), the SMT DOF will
be much larger than the 110 pm considered.

Note that the NAf in Supplementary Fig. 24d is asymmetric in z. This is because of the refraction at the
air-glass and glass-sample interfaces. As mentioned in Supplementary Sect. III D and illustrated in Supplementary
Fig. 8b, the depth zf*™ of the focal plane in the sample depends on the incident angle. Here, z§*™(0°) = 1466 pm
and 2§ (30°) = 1594 pm. Since NAST is determined by the maximal angle, it is larger near z§*™(30°) = 1594 pm,
so the lateral resolution is the sharpest there. Without refractive index mismatches, zf*" will be independent of the
incident angle, and NAST will decay symmetrically away from the reference plane.
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Supplementary Fig. 25. Depth of field with expanded field of view. The effective NA (left) and the ratio of accessible
k; (right) when the field of view is 200 pm.

The strength of the signal depends on the number of accessible k. Therefore, in Supplementary Fig. 24e, we
plot the ratio Naccessible/Ntotal between the number of accessible k|| points and the total number of k|| within the NA
of the objective lens. This ratio remains above 0.5 across most points within the volume considered in the main text.

With the geometry shown above, we expect the SMT DOF to grow with the FOV. As an example, Supplementary
Fig. 25 shows the corresponding predictions given a FOV of 200 pm. In this case, SMT has a DOF of roughly 400 pm.
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Supplementary Fig. 26. Experimental FWHM resolution of nanoparticle colloid. Each experimental data point is
the mean value over a 10-num depth interval, with error bars indicating plus/minus one standard deviation.
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Supplementary Fig. 27. Strategy to integrate SMT and swept-source OCT.

C. Experimental FWHM resolution

To systematically study the resolution of the experimental SMT image, we use the Trackmate [97, 100] plugin in
Fiji [98] with a Laplacian of Gaussian (LoG) detector to analyze the 3D SMT image of the nanoparticle colloid, setting
the estimated diameter as 4 pixels (0.2 pm per pixel), quality threshold as 130. The analysis locates ~3,610 particles.
For each located particle, we extract the FWHM resolution of its SMT image along the x, y, and z directions using
the findpeaks function in MATLAB. We bin the data set with a depth interval of 10 pm and calculate the mean
and standard deviation within each depth interval, with results shown in Supplementary Fig. 26. The FWHM
resolution in y is slightly better than in x because our incident angular range in y is larger after excluding incident
angles with weak signals (Supplementary Sect. IC).

We also plot the theoretically predicted results as red dashed lines. For the lateral resolution, we use the model of
Supplementary Sect. VIIIB above to calculate NAf (2, v, 2) at each position (z,y,2) in the 3D volume and average
over (z,y) for each z to obtain 1/NA°f(2) = (1/NA®f(z,y, 2)),., to model the z dependence of the lateral resolution.
For the axial resolution, we show the theoretical estimate of 6z = 1.42 pm from Supplementary Sect. VIIT A.

IX. INTEGRATING SMT AND OTHER IMAGING MODALITIES

In this section, we propose some strategies to integrate SMT with other imaging modalities. The current data
acquisition speed of SMT is severely limited by the Ti:Sa tunable laser. By integrating SMT with swept-source
OCT, the scanning speed of the laser no longer becomes a limiting factor. When measuring the matrix in the spatial
basis, SMT captures the scattered light from various locations while OCT only captures the scattered light from
the illuminated locations, making it a narrow case of SMT. Therefore, SMT and OCT can share the illumination
part of the optical system while differing in the collection part. Supplementary Fig. 27 illustrates a strategy
to incorporate SMT with swept-source OCT, which is a standard imaging modality for medical, especially surgical,
applications. Additionally, since SMT provides powerful aberration corrections, its correction maps can become useful
for fluorescence or multi-photon microscopy. Supplementary Fig. 28 illustrates a strategy to incorporate SMT with
fluorescence microscopy, adopting the proposed CLASS-single molecule localization microscopy integrated system of
Park et al. [99], where a flip mirror separates the SMT and the fluorescence microscopy parts. SMT runs and identifies
the optimal correction phases before loading it to the DM on the pupil plane of the fluorescence part of the optical
system. These are only two examples of future optical systems where SMT can be used alongside other imaging
modalities.

X. SMT FOR IMAGING DECORRELATION OF DYNAMIC SAMPLES

Similar to OCT angiography, SMT can also be used to image the decorrelation of dynamic samples such as blood
vessels. We take multiple SMT measurements, indexed from 1 to N, and build multiple SMT images I;(r) (j = 1,..,N).
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Supplementary Fig. 28. Strategy to integrate SMT and fluorescence microscopy. Here, the red color represents
the SMT sample beam, the light red represents SMT reference beam, the green represents incident light of the fluorescence
microscopy, and the light green represents the output light of the fluorescence microscopy which has a different wavelength
from the incidence.

Then, we compute the decorrelation[74]

N-—1
D(r)=1-2 Z_‘; I;IZS )ijlj;%f()r) (S72)

In OCT angiography, as the dynamic samples such as blood vessels decorrelate a lot faster than their surrounding
tissues, the decorrelation image D(r) can successfully show the blood vessels that may not show up on the original
OCT images. SMT can adopt the same principle. The difference is that each SMT image may have higher quality
than OCT images due to better aberration correction.

XI. SMT FOR VECTORIAL WAVES

SMT is capable of measuring the vectorial scattering matrices by controlling the two Fresnel rhombs after the
polarized beam splitter, as shown in Supplementary Fig. 1. The Fresnel rhomb on the sample arm determines the
polarization of the incident wave. The Fresnel rhomb on the reference arm determines the output polarization. For
example, when the sample arm’s Fresnel rhomb is right-handed circular polarization while the reference arm’s Fresnel
rhomb is left-handed circular polarization, we get the interference of the reference beam and the left-handed circularly
polarized scattered wave on the camera.

Controlling the two Frenel rhombs, we can measure the full vectorial scattering matrices, labeled as Srr (Kout,Kin,w),
SrL (Kout , Kin,w), SLr (Kout,Kin,w), and Spr, (Kout,Kin,w). In the subscripts RR, RL, LR, and LL, the first letter repre-
sents the polarization of the incident wave (R: right-handed circular polarization, L: left-handed circular polarization),
and the second letter represents the polarization of the output waves. For example, Sgr, (Kout,Kin,w) contains the scat-
tering coefficients at frequency w, the incidence is right-handed circularly polarized with wavenumber k;,, the output
is left-handed circularly polarized with wavenumber k... Applying Eq. 2 on each of these matrices, we get four
images Irr(r), Irr(r), ILr(r), and Iy (r). Each of these images shows how the imaging sample responds to polarized
incidence, similar to polarization-sensitive OCT. For example, if the incident light is scattered at position r and the
polarization remains relatively unchanged, the pixels r are bright on the co-polarized images Irg(r) and Ipp(r) and
dark on the cross-polarized images Iry,(r) and I;,r(r) and vice versa.

Each vectorial scattering matrix can also have its phases modified to correct for sample-induced aberrations by
optimizing the corresponding image, the same as how we correct for aberrations in the non-vectorial scattering matrix
S (kout,Kin,w). For example, the aberrations on the right-handed circularly polarized incidence can be corrected by
applying a phase shift ¢ing(kin) to each input kin of Srgr (Kout,Kin,w) and Sry (Kout,Kin,w), dinr (kin) can be found by
optimizing the quality metrics M of Igg(r) and/or Iry(r).
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Supplementary Fig. 29. The propagation of light from the surface of a scattering medium to an imaging depth.

XII. POTENTIAL USE OF NUMERICAL SIMULATIONS TO IMAGE DEEPER WITH MULTIPLE
SCATTERING SIGNALS

Instead of treating multiple scattering as noise and suppressing it, an alternative approach to image deep in scatter-
ing media is to utilize multiple scattering as useful signals. Here we discuss the potential use of numerical simulations
to obtain multiple scattering signals and use them to image deeper.

First, we have a look at the signal formation at depth z = zy inside a scattering medium. In Supplementary
Fig. 29, incident light at frequency w and wavenumber k;, travels inside the scattering medium from its surface at
z = 0 to depth z = 2. The transmitted light with wavenumber ky is scattered by the scatterers at depth z = z
and becomes reflected light with wavenumber k,. That reflected light passes through the scattering medium back to
z = 0 and emerges out of the scattering medium with wavenumber ko,¢. The reflection coefficient R(Kout, Kin, w) can
be expressed as:

R(koutakiruw) = T_l(kouta kr7w7 z < ZO)R/(kra ktaw7 z 2 ZO)T(kh kin,w,z < ZO) (873)

where R(k;, k¢, w, z > zp) is the reflection matrix of the scattering medium at depth z > zp, linking input k¢ to output
k, at frequency w, and T'(k¢, kin,w, z < 2p) is the transmission matrix of the scattering medium from z = 0 to z = zo,
linking k;,, to output k¢ at frequency w. R'(k;, k¢, w, 29) can be found by:

R/(kra kt7w7 z Z ZO) = T(kout; kraw7 z < ZO)R(kOui’mkinaw)T_l(kfn kiruw) z < ZO) (874)

The eventual reflection matrix R(Kout, Kin,w) is what we can measure. R’(k;, k¢, w, z > zg) is what we need to find to
image at depth 2o and below. For that purpose, the transmission matrix T'(kg, Kin, w, 2 < 2p), which consists of both
single and multiple scattering, has to be determined.

To find this matrix with simulations, we image the sample at other shallower depths z < zg. These images may
provide information about the locations and sizes of scatterers at z < zg, which can be used to construct a simulation
model. Simulations are then conducted to find the transmission matrix of the scattering medium from z = 0 to z = 2.

In practice, it remains an open question whether simulations can help push the imaging depth in a real, particular
biological sample. A simulation model that exactly resembles the real sample, i.e., the sizes, positions, and refractive
indices of all scatterers inside the sample, is needed. This is practically impossible for label-free non-invasive imaging
because quantitative phase imaging methods that give the samples’ refractive indices require cutting the samples into
slices and measuring the transmitted light. In the above example, even if we image and get the sizes and positions
of scatterers above zg, their exact refractive indices are unknown. For some well-known tissues or cells, one can use
approximated refractive indices from available databases [85]. However, as we image very deep inside scattering media,
approximately 1000 times the wavelength, and the phase that light accumulates during propagation scales linearly
with the product of depth and refractive index, a small error in the refractive index can potentially lead to significant
error on the phase of the simulated transmission matrix. In addition, before reaching the imaging depth zg, light
has been scattered multiple times, each time light scatters off a scatterer, its refractive index determines how many
photons go into which direction. Thus, a small error in the refractive index can lead to huge errors on the amplitude
of the simulated transmission matrix. All of the uncertainty in refractive indices renders the simulated multiple
scattering signals unusable. Therefore, there is still a long way to go from understanding how light is scattered inside
a simulated scattering phantom to accurately evaluating the multiple scattering signals in a real, particular sample
to image deeper.
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